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Welcome to Statistical Theory!

This book contains the course notes for MATH/STAT 355: Statistical Theory* at Macalester
College, as taught by Prof. Taylor Okonek. These notes draw from reading guides created by
Prof. Kelsey Grinde, a little bit from the textbook, An Introduction to Mathematical Statistics
and Its Applications by Richard Larsen and Morris Marx (6th Edition), and the STAT 512/513
Course Notes developed by Dr. Michael Perlman at the University of Washington. As of
Spring 2025, this course no longer requires a textbook, and relies heavily on these course notes
instead.

Each chapter of the course notes will contain (at a minimum):

1. Topic Introduction

2. Learning Objectives

3. Concept Questions

4. Definitions

5. Theorems

6. Worked Examples

I will be editing and adding to these notes throughout Spring 2025, so please check
consistently for updates!

If you find any typos or have other questions, please email tokonek@macalester.edu.

* MATH/STAT 355: Statistical Theory went under the title MATH/STAT 455: Mathematical
Statistics prior to Spring 2025. The course content is largely similar, the differences primarily
being the structure of the course and not the content itself.
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1 Probability: A Brief Review

MATH/STAT 355 builds directly on topics covered in MATH/STAT 354: Probability. You’re
not expected to perfectly remember everything from Probability, but you will need to have
sufficient facility with the following topics covered in this review Chapter in order to grasp the
majority of concepts covered in MATH/STAT 355.

1.1 Learning Objectives

By the end of this chapter, you should be able to…

• Distinguish between important probability models (e.g., Normal, Binomial)

• Derive the expectation and variance of a single random variable or a sum of random
variables

• Define the moment generating function and use it to find moments or identify pdfs

• Derive pdfs of transformations of continuous random variables

1.2 Concept Questions

1. Which probability distributions are appropriate for quantitative (continuous) random
variables?

2. Which probability distributions are appropriate for categorical random variables?

3. Independently and Identically Distributed (iid) random variables are an incredibly impor-
tant assumption involved in many statistical methods. Why do you think it might be
important/useful for random variables to have this property?

4. Why might we want to be able to derive distribution functions for transformations of
random variables? In what scenarios can you imagine this being useful?
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1.3 Definitions

You are expected to know the following definitions:

Random Variable

A random variable is a function that takes inputs from a sample space of all possible outcomes,
and outputs real values or probabilities. As an example, consider a coin flip. The sample space
of all possible outcomes consists of “heads” and “tails”, and each outcome is associated with
a probability (50% each, for a fair coin). For our purposes, you should know that random
variables have probability density (or mass) functions, and are either discrete or continuous
based on the number of possible outcomes a random variable may take. Random variables are
often denoted with capital Roman letters, like 𝑋, 𝑌 , 𝑍, etc.

Probability density function (discrete, continuous)

• Note: I don’t care if you call a pmf a pdf… I will probably do this continuously throughout
the semester. We don’t need to be picky about this in MATH/STAT 355.

There are many different accepted ways to write the notation for a pdf of a random variables.
Any of the following are perfectly appropriate for this class: 𝑓(𝑥), 𝜋(𝑥), 𝑝(𝑥), 𝑓𝑋(𝑥). I typically
use either 𝜋 or 𝑝, but might mix it up occasionally.

Key things I want you to know about probability density functions:

• 𝜋(𝑥) ≥ 0, everywhere. This should make sense (hopefully) because probabilities cannot
be negative!

• ∫∞
−∞ 𝜋(𝑥) = 1. This should also (hopefully) makes sense. Probabilities can’t be greater
than one, and the probability of event occurring at all (ever) should be equal to one, if
the event 𝑥 is a random variable.

Cumulative distribution function (discrete, continuous)

Cumulative distribution functions we’ll typically write as 𝐹𝑋(𝑥). or 𝐹(𝑥), for short. It is
important to know that

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥),

or in words, “the cumulative distribution function is the probability that a random variable
lies before 𝑥.” If you write Pr(𝑋 < 𝑥) instead of ≤, you’re fine. The probability that a random
variable is exactly one number (for an RV with a continuous pdf) is zero anyway, so these are
the same thing. Key things I want you to know about cumulative distribution functions:
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• 𝐹(𝑥) is non-decreasing. This is in part where the “cumulative” piece comes in to play.
Recall that probabilities are basically integrals or sums. If we’re integrating over some-
thing positive, and our upper bound for our integral increases, the area under the curve
(cumulative probability) will increase as well.

• 0 ≤ 𝐹(𝑥) ≤ 1 (since probabilities have to be between zero and one!)

• Pr(𝑎 < 𝑋 ≤ 𝑏) = 𝐹(𝑎) − 𝐹(𝑏) (because algebra)

Joint probability density function

A joint probability density function is a probability distribution defined for more than one
random variable at a time. For two random variables, 𝑋 and 𝑍, we could write their joint
density function as 𝑓𝑋,𝑍(𝑥, 𝑧) , or 𝑓(𝑥, 𝑧) for short. The joint density function encodes all sorts
of fun information, including marginal distributions for 𝑋 and 𝑍, and conditional distributions
(see next bold definition). We can think of the joint pdf as listing all possible pairs of outputs
from the density function 𝑓(𝑥, 𝑧), for varying values of 𝑥 and 𝑧. Key things I want you to
know about joint pdfs:

• How to get a marginal pdf from a joint pdf:

Suppose I want to know 𝑓𝑋(𝑥), and I know 𝑓𝑋,𝑍(𝑥, 𝑧). Then I can integrate or “average
over” 𝑍 to get

𝑓𝑋(𝑥) = ∫ 𝑓𝑋,𝑍(𝑥, 𝑧)𝑑𝑧

• The relationship between conditional pdfs, marginal pdfs, joint pdfs, and Bayes’ theo-
rem/rule

• How to obtain a joint pdf for independent random variables: just multiply their marginal
pdfs together! This is how we will (typically) think about likelihoods!

• How to obtain a marginal pdf from a joint pdf when random variables are independent
without integrating (think, “separability”)

Conditional probability density function

A conditional pdf denotes the probability distribution for a (set of) random variable(s), given
that the value for another (set of) random variable(s) is known. For two random variables,
𝑋 and 𝑍, we could write the conditional distribution of 𝑋 “given” 𝑍 as 𝑓𝑋∣𝑍(𝑥 ∣ 𝑧) , where
the “conditioning” is denoted by a vertical bar (in LaTeX, this is typeset using “\mid”). Key
things I want you to know about conditional pdfs:

• The relationship between conditional pdfs, marginal pdfs, joint pdfs, and Bayes’ theo-
rem/rule

• How to obtain a conditional pdf from a joint pdf (again, think Bayes’ rule)
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• Relationship between conditional pdfs and independence (see next bold definition)

Independence

Two random variables 𝑋 and 𝑍 are independent if and only if:

• 𝑓𝑋,𝑍(𝑥, 𝑧) = 𝑓𝑋(𝑥)𝑓𝑍(𝑧) (their joint pdf is “separable”)

• 𝑓𝑋∣𝑍(𝑥 ∣ 𝑧) = 𝑓𝑋(𝑥) (the pdf for 𝑋 does not depend on 𝑍 in any way)

Note that the “opposite” is also true: 𝑓𝑍∣𝑋(𝑧 ∣ 𝑥) = 𝑓𝑍(𝑧)

In notation, we denote that two variables are independent as 𝑋 ⟂⟂ 𝑍, or 𝑋 ⟂ 𝑍. In LaTeX,
the latter is typeset as “\perp”, and the former is typeset as “\perp\!\!\!\perp”. As a matter
of personal preference, I (Taylor) prefer ⟂⟂, but I don’t like typing it out every time. Consider
using the “\newcommand” functionality in LaTeX to create a shorthand for this for your
documents!

Jacobian Matrix

Let 𝑓 be a 1-1 and onto function, where 𝑓(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, … , 𝑛. Then the Jacobian matrix
of 𝑓 is the matrix of partial derivatives,

𝐽𝑓(𝑥) = ⎛⎜⎜
⎝

𝜕𝑦1
𝜕𝑥1

… 𝜕𝑦𝑛
𝜕𝑥1

⋮ ⋮
𝜕𝑦1
𝜕𝑥𝑛

… 𝜕𝑦𝑛
𝜕𝑥𝑛

⎞⎟⎟
⎠

The Jacobian matrix is sometimes simply referred to as the “Jacobian”, but be careful when
simply calling it the Jacobian, since this can sometimes refer to the determinant of the Jacobian
matrix as well. For this course, we’ll always refer to the Jacobian matrix as a matrix, and the
“Jacobian” as its determinant.

Jacobian

The Jacobian is the determinant of the Jacobian matrix, denoted by |𝐽𝑓(𝑥)|. Recall from
linear algebra that 𝐷𝑒𝑡(𝐴) = 𝐷𝑒𝑡(𝐴⊤). This is convenient, because it means we won’t have
worry too much about remembering which order our partial derivatives go in our matrix, for
2x2 matrices (which is all we’ll be working with for this course).

Expected Value / Expectation

The expectation (or expected value) of a random variable is defined as:

𝐸[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥
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Expected value is a weighted average, where the average is over all possible values a random
variable can take, weighted by the probability that those values occur. Key things I want you
to know about expectation:

• The relationship between expectation, variance, and moments (specifically, that 𝐸[𝑋] is
the 1st moment!)

• The “law of the unconscious statistician” (see the Theorems section of this chapter)

• Expectation of linear transformations of random variables (see Theorems section of this
chapter)

Variance

The variance of a random variable is defined as:

𝑉 𝑎𝑟[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝐸[𝑋2] − 𝐸[𝑋]2

In words, we can read this as “the expected value of the squared deviation from the mean” of
a random variable 𝑋. Key things I want you to know about variance:

• The relationship between expectation, variance, and moments (hopefully clear, given the
formula for variance)

• The relationship between variance and standard deviation: 𝑉 𝑎𝑟(𝑋) = 𝑠𝑑(𝑋)2

• The relationship between variance and covariance: 𝑉 𝑎𝑟(𝑋) = 𝐶𝑜𝑣(𝑋, 𝑋)
• 𝑉 𝑎𝑟(𝑋) ≥ 0. This should make sense, given that we’re taking the expectation of some-

thing “squared” in order to calculate it!

• 𝑉 𝑎𝑟(𝑐) = 0 for any constant, 𝑐.
• Variance of linear transformations of random variables (see Theorems section of this

chapter)

𝑟𝑡ℎ moment

The 𝑟𝑡ℎ moment of a probability distribution is given by 𝐸[𝑋𝑟]. For example, when 𝑟 = 1, the
𝑟𝑡ℎ moment is just the expectation of the random variable 𝑋. Key things I want you to know
about moments:

• The relationship between moments, expectation, and variance

– For example, if you know the first and second moments of a distribution, you should
be able to calculate the variance of a random variable with that distribution!

• The relationship between moments and moment generating functions (see Theorems
section of this chapter)
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Covariance

The covariance of two random variables is a measure of their joint variability. We denote the
covariance of two random variables 𝑋 and 𝑍 as 𝐶𝑜𝑣(𝑋, 𝑍), and

𝐶𝑜𝑣(𝑋, 𝑍) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])] = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ]

Some things I want you to know about covariance:

• 𝐶𝑜𝑣(𝑋, 𝑋) = 𝑉 𝑎𝑟(𝑋)
• 𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑌 , 𝑋) (order doesn’t matter)

Moment Generating Function (MGF)

The moment generating function of a random variable 𝑋 is defined as

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋]

A few things to note:

• 𝑀𝑋(0) = 1, always.
• If two random variables have the same MGF, they have the same probability distribution!

• MGFs are sometimes useful for showing how different random variables are related to
each other

1.3.1 Distributions Table

You are also expected to know the probability distributions contained in Table 1, below. Note
that you do not need to memorize the pdfs for these distributions, but you should be familiar
with what types of random variables (continuous/quantitative, categorical, integer-valued, etc.)
may take on different distributions. The more familiar you are with the forms of the pdfs, the
easier/faster it will be to work through problem sets and quizzes.

Table 1.1: Table 1. Table of main probability distributions we will work with forMATH/STAT
355.

Distribution PDF/PMF Parameters Support
Uniform 𝜋(𝑥) = 1

𝛽−𝛼 𝛼 ∈ ℝ, 𝛽 ∈ ℝ 𝑥 ∈ [𝛼, 𝛽]
Normal 𝜋(𝑥) =

1√
2𝜋𝜎2 exp(− 1

2𝜎2 (𝑥 −
𝜇)2)

𝜇 ∈ ℝ, 𝜎 > 0 𝑥 ∈ ℝ
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Distribution PDF/PMF Parameters Support
Multivariate Normal 𝜋(x) =

(2𝜋)−𝑘/2|Σ|−1/2 exp(−1
2(x−

𝜇)⊤Σ−1(x − 𝜇)))

𝜇 ∈ ℝ𝑘, Σ ∈ ℝ𝑘×𝑘 ,
positive semi-definite
(in practice, almost
always positive
definite)

𝑥 ∈ ℝ𝑘

Gamma 𝜋(𝑥) = 𝛽𝛼

Γ(𝛼)𝑥𝛼−1𝑒−𝛽𝑥 𝛼 (shape), 𝛽 (rate) >
0

𝑥 ∈ (0, ∞)

Chi-squared 𝜋(𝑥) =
2−𝜈/2

Γ(𝜈/2)𝑥𝜈/2−1𝑒−𝑥/2
𝜈 > 0 𝑥 ∈ [0, ∞)

𝐹 𝜋(𝑥) =
Γ( 𝜈1+𝜈2

2 )
Γ( 𝜈1

2 )Γ( 𝜈2
2 ) (𝜈1

𝜈2
)𝜈1/2 ( 𝑥(𝜈1−2)/2

(1+( 𝜈1
𝜈2 )𝑥)

(𝜈1+𝜈2)/2 )

𝜈1, 𝜈2 > 0 𝑥 ∈ [0, ∞)

Exponential 𝜋(𝑥) = 𝛽𝑒−𝛽𝑥 𝛽 > 0 𝑥 ∈ [0, ∞)
Laplace (Double
Exponential)

𝜋(𝑥) =
1
2𝑏 exp(− |𝑥−𝜇|

𝑏 )
𝜇 ∈ ℝ, 𝑏 > 0 𝑥 ∈ ℝ

Student-𝑡 𝜋(𝑥) = Γ((𝜈+1)/2)
Γ(𝜈/2)√𝜈𝜋(1 +

𝑥2
𝜈 )−(𝜈+1)/2

𝜈 > 0 𝑥 ∈ ℝ

Beta 𝜋(𝑥) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)𝑥𝛼−1(1 −
𝑥)𝛽−1

𝛼, 𝛽 > 0 𝑥 ∈ [0, 1]

Poisson 𝜋(𝑥) = 𝜆𝑥𝑒−𝜆
𝑥! 𝜆 > 0 𝑥 ∈ ℕ

Binomial 𝜋(𝑥) =
(𝑛

𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥
𝑝 ∈ [0, 1], 𝑛 =
{0, 1, 2, … }

𝑥 ∈ {0, 1, … , 𝑛}

Multinomial 𝜋(x) =
𝑛!

𝑥1!…𝑥𝑘!𝑝
𝑥1
1 … 𝑝𝑥𝑘

𝑘

𝑝𝑖 > 0,
𝑝1 + ⋯ + 𝑝𝑘 = 1,
𝑛 = {0, 1, 2, … }

{𝑥1, … , 𝑥𝑘 ∣
∑𝑘

𝑖=1 𝑥𝑖 = 𝑛, 𝑥𝑖 ≥
0(𝑖 = 1, … , 𝑘)}

Negative Binomial 𝜋(𝑥) =
(𝑥+𝑟−1

𝑥 )(1 − 𝑝)𝑥𝑝𝑟
𝑟 > 0, 𝑝 ∈ [0, 1] 𝑥 ∈ {0, 1, … }

1.4 Theorems

• Law of Total Probability

𝑃(𝐴) = ∑
𝑛

𝑃(𝐴 ∩ 𝐵𝑛),

or

11



𝑃(𝐴) = ∑
𝑛

𝑃(𝐴 ∣ 𝐵𝑛)𝑃 (𝐵𝑛)

• Bayes’ Theorem

𝜋(𝐴 ∣ 𝐵) = 𝜋(𝐵 ∣ 𝐴)𝜋(𝐴)
𝜋(𝐵)

• Relationship between pdf and cdf

𝐹𝑌 (𝑦) = ∫
𝑦

−∞
𝑓𝑌 (𝑡)𝑑𝑡

𝜕
𝜕𝑦𝐹𝑌 (𝑦) = 𝑓𝑌 (𝑦)

• Expectation of random variables

𝐸[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥

𝐸[𝑋2] = ∫
∞

−∞
𝑥2𝑓(𝑥)𝑑𝑥

– “Law of the Unconscious Statistician”

𝐸[𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓(𝑥)𝑑𝑥

• Expectation and variance of linear transformations of random variables

𝐸[𝑐𝑋 + 𝑏] = 𝑐𝐸[𝑋] + 𝑏

𝑉 𝑎𝑟[𝑐𝑋 + 𝑏] = 𝑐2𝑉 𝑎𝑟[𝑋]

• Relationship between mean and variance

𝑉 𝑎𝑟[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝐸[𝑋2] − 𝐸[𝑋]2

Also, recall that 𝐶𝑜𝑣[𝑋, 𝑋] = 𝑉 𝑎𝑟[𝑋].
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• Iterated Things

𝐸[𝑋] = 𝐸[𝐸[𝑋 ∣ 𝑌 ]]
and

𝑉 𝑎𝑟(𝑋) = 𝐸[𝑉 𝑎𝑟(𝑋 ∣ 𝑌 )] + 𝑉 𝑎𝑟(𝐸[𝑋 ∣ 𝑌 ])

• Finding a marginal pdf from a joint pdf

𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑦

• Independence of random variables and joint pdfs

If two random variables are independent, their joint pdf will be separable. For example,
if 𝑋 and 𝑌 are independent, we could write

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦)

• Expected value of a product of independent random variables

Suppose random variables 𝑋1, … , 𝑋𝑛 are independent. Then we can write,

𝐸 [
𝑛

∏
𝑖=1

𝑋𝑖] =
𝑛

∏
𝑖=1

𝐸[𝑋𝑖]

• Covariance of independent random variables

If 𝑋 and 𝑌 are independent, then 𝐶𝑜𝑣(𝑋, 𝑌 ) = 0. We can show this by noting that

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])] (1.1)
= 𝐸[𝑋𝑌 − 𝑋𝐸[𝑌 ] − 𝑌 𝐸[𝑋] + 𝐸[𝑋]𝐸[𝑌 ]] (1.2)
= 𝐸[𝑋𝑌 ] − 𝐸[𝑋𝐸[𝑌 ]] − 𝐸[𝑌 𝐸[𝑋]] + 𝐸[𝑋]𝐸[𝑌 ] (1.3)
= 2𝐸[𝑋]𝐸[𝑌 ] − 2𝐸[𝑋]𝐸[𝑌 ] (1.4)
= 0 (1.5)
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• Using MGFs to find moments

Recall that the moment generating function of a random variable 𝑋, denoted by 𝑀𝑋(𝑡)
is

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋]

Then the 𝑛th moment of the probability distribution for 𝑋 , 𝐸[𝑋𝑛], is given by

𝜕𝑀𝑋
𝜕𝑡𝑛 ∣

𝑡=0

where the above reads as “the 𝑛th derivative of the moment generating function, evalu-
ated at 𝑡 = 0.”

• Using MGFs to identify pdfs

MGFs uniquely identify probability density functions. If 𝑋 and 𝑌 are two random
variables where for all values of 𝑡, 𝑀𝑋(𝑡) = 𝑀𝑌 (𝑡), then 𝐹𝑋(𝑥) = 𝐹𝑌 (𝑦).

• Central Limit Theorem

The classical CLT states that for independent and identically distributed (iid) random
variables 𝑋1, … , 𝑋𝑛, with expected value 𝐸[𝑋𝑖] = 𝜇 and 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2 < ∞, the sam-
ple average (centered and standardized) converges in distribution to a standard normal
distribution at a root-𝑛 rate. Notationally, this is written as

√𝑛(�̄� − 𝜇) 𝑑→ 𝑁(0, 𝜎2)

A fun aside: this is only one CLT, often referred to as the Levy CLT. There are
other CLTs, such as the Lyapunov CLT and Lindeberg-Feller CLT!

1.4.1 Transforming Continuous Random Variables

We will often take at face value previously proven relationships between random variables.
What I mean by this, as an example, is that it is a nice (convenient) fact that a sum of
two independent normal random variables is still normally distributed, with a nice form for
the mean and variance. In particular, if 𝑋 ∼ 𝑁(𝜇, 𝜎2) and 𝑌 ∼ 𝑁(𝜃, 𝜈2), then 𝑋 + 𝑌 ∼
𝑁(𝜇 + 𝜃, 𝜎2 + 𝜈2). Most frequently used examples of these sorts of relationships can be found
in the “Related Distributions” section of the Wikipedia page for a given probability distribution.
Unless I explicitly ask you to derive/show how certain variables are related to each other, you
can just state the known relationship, use it, and move on!
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If I do ask you to derive/show these things, there a few different ways we can go about this.
For this course, I expect you to know the “CDF method” for one function of one random
variable, and the “Jacobian method” for a function of more than one random variable.

1.4.1.1 CDF Method: One random variable

Theorem. Let 𝑋 be a continuous random variable with pdf 𝑓𝑋(𝑥). Define a new random
variable 𝑌 = 𝑔(𝑋), for nice* functions 𝑔. Then 𝑓𝑌 (𝑦) = 𝑓𝑋(𝑔−1(𝑦)) × 1

𝑔′(𝑔−1(𝑦)) .

*By nice functions we mean functions that are strictly increasing and smooth on the
required range. As an example, 𝑒𝑥𝑝(𝑥) is a smooth, strictly increasing function; |𝑥| is not on
the whole real line, but is from (0, ∞) (where a lot of useful pdfs are defined). For the purposes
of this class, every function that you will need to do this for will be “nice.” Note that there are
also considerations that need to be taken regarding the range of continuous random variables
when considering transforming them. We will mostly ignore these considerations in this class,
but a technically complete derivation (or proof) must consider them.

Proof.

We can write

𝑓𝑌 (𝑦) = 𝜕
𝜕𝑦𝐹𝑌 (𝑦)

= 𝜕
𝜕𝑦 Pr(𝑌 ≤ 𝑦)

= 𝜕
𝜕𝑦 Pr(𝑔(𝑋) ≤ 𝑦)

= 𝜕
𝜕𝑦 Pr(𝑋 ≤ 𝑔−1(𝑦))

= 𝜕
𝜕𝑦𝐹𝑋(𝑔−1(𝑦))

= 𝑓𝑋(𝑔−1(𝑦)) × 𝜕
𝜕𝑦𝑔−1(𝑦)

where to obtain the last equality we use chain rule! Now we require some statistical trickery
to continue… (note that this method is called the “CDF method” because we go through the
CDF to derive the distribution for 𝑌 )

You will especially see this in the Bayes chapter of our course notes, but it is often true that our
lives are made easier as statisticians if we multiply things by one, or add zero. What exactly
do I mean? Rearranging gross looking formulas into things we are familiar with (like pdfs, for
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example) often makes our lives easier and allows us to avoid dealing with such grossness. Here,
the grossness is less obvious, but nonetheless relevant. Note that we can write

𝑦 = 𝑦
𝑦 = 𝑔(𝑔−1(𝑦))

𝜕
𝜕𝑦𝑦 = 𝜕

𝜕𝑦𝑔(𝑔−1(𝑦))

1 = 𝑔′(𝑔−1(𝑦)) 𝜕
𝜕𝑦𝑔−1(𝑦) (chain rule again!)

1
𝑔′(𝑔−1(𝑦)) = 𝜕

𝜕𝑦𝑔−1(𝑦)

The right-hand side should look familiar: it is exactly what we needed to “deal with” in our
proof! Returning to that proof, we have

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑔−1(𝑦)) × 𝜕
𝜕𝑦𝑔−1(𝑦)

= 𝑓𝑋(𝑔−1(𝑦)) × 1
𝑔′(𝑔−1(𝑦))

as desired.

1.4.1.2 Jacobian Method: More than one random variable

Transformations of single random variables are great, but we’ll need to work with transfor-
mations of more than one random variable if we want to be able to manipulate joint pdfs.
Suppose, for example, we have 𝑋 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝜆) and 𝑌 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛽, 𝜆), where 𝑋 ⟂⟂ 𝑌 .
Let 𝑈 = 𝑋+𝑌 and 𝑊 = 𝑋

𝑋+𝑌 . How do we show that 𝑈 and 𝑊 are independent? Through find-
ing the joint pdf! Which means we need a method for transforming more than one, continuous
random variable. Enter the Jacobian Method.

Theorem. Let 𝑋 = (𝑥1, … , 𝑥𝑛) be a vector of random variables (a random vector) with
pdf 𝜋𝑋(𝑥). Suppose that 𝑓(𝑥) = 𝑦 is a 1-1 and onto function, and that |𝐽𝑓(𝑥)| > 0 almost
everywhere. Then 𝜋𝑌 (𝑦) is given by

𝜋𝑌 (𝑦) = 𝜋𝑋(𝑓−1(𝑦)) × ∣𝜕𝑥
𝜕𝑦 ∣ × 𝐼𝑌 {𝑦}

where 𝐼𝑌 {𝑦} denotes the support of 𝑌 .
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NOTE: |𝐽𝑓(𝑦)| = |𝜕𝑥
𝜕𝑦 |, above, where 𝑓(𝑥) = 𝑦. This means that the numerators and denomina-

tors in the Jacobian Matrix in the definition in the Course Notes are flipped here. See Worked
Example 7.

Proof.

Note that if 𝑓 is both 1-1 and onto, then 𝑓 is either monotone increasing or monotone de-
creasing. We’ll prove the case where 𝑓 is increasing, and we’ll note (but not show) how the
decreasing case follows directly.

Let 𝑓 be an increasing, continuous function. For some subset 𝐶 ⊆ ℝ𝑛,

∫
𝐶

𝜋𝑌 (𝑦)𝑑𝑦 = Pr(𝑌 ∈ 𝐶)

= Pr(𝑓(𝑋) ∈ 𝐶)
= Pr(𝑋 ∈ 𝑓−1(𝐶))

= ∫
𝑓−1(𝐶)

𝜋𝑋(𝑥)𝑑𝑥

Now we’ll use a (convoluted) 𝑢-substitution to make this look like what we want it to look like.
Let 𝑢 = 𝑓−1(𝑦). Note that this also means 𝑢 = 𝑥. Then 𝑑𝑢 = (𝑓−1(𝑦))′𝑑𝑦 = 𝑑𝑥. Proceeding
with 𝑢-substitution, we have

∫
𝐶

𝜋𝑌 (𝑦)𝑑𝑦 = ∫
𝑓−1(𝐶)

𝜋𝑋(𝑥)𝑑𝑥

= ∫
𝐶

𝜋𝑋(𝑢)𝑑𝑢

= ∫
𝐶

𝜋𝑋(𝑓−1(𝑦))(𝑓−1(𝑦))′𝑑𝑦

= ∫
𝐶

𝜋𝑋(𝑓−1(𝑦))∣𝑑𝑥
𝑑𝑦 ∣𝑑𝑦

which implies 𝜋𝑌 (𝑦) = 𝜋𝑋(𝑓−1(𝑦))∣𝑑𝑥
𝑑𝑦 ∣, as desired. The absolute value signs (the Jacobian

piece) come into play to help us deal with the decreasing case.

1.5 Worked Examples

Problem 1: Suppose 𝑋 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆). Calculate 𝐸[𝑋] and 𝑉 𝑎𝑟[𝑋].
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Solution:

We know that 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥. If we can calculate 𝐸[𝑋] and 𝐸[𝑋2], then we’re basically done!
We can write

𝐸[𝑋] = ∫
∞

0
𝑥𝜆𝑒−𝜆𝑥𝑑𝑥

= 𝜆 ∫
∞

0
𝑥𝑒−𝜆𝑥𝑑𝑥

And now we need integration by parts! Set 𝑢 = 𝑥, 𝑑𝑣 = 𝑒−𝜆𝑥𝑑𝑥. Then 𝑑𝑢 = 1𝑑𝑥 and
𝑣 = −1

𝜆 𝑒−𝜆𝑥. Since ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢, we can continue

𝐸[𝑋] = 𝜆 ∫
∞

0
𝑥𝑒−𝜆𝑥𝑑𝑥

= 𝜆 (−𝑥
𝜆𝑒−𝜆𝑥∣

∞

0
− ∫

∞

0

−1
𝜆 𝑒−𝜆𝑥𝑑𝑥)

= 𝜆 (− ∫
∞

0

−1
𝜆 𝑒−𝜆𝑥𝑑𝑥)

= 𝜆 (−1
𝜆2 𝑒−𝜆𝑥∣

∞

0
)

= −1
𝜆 𝑒−𝜆𝑥∣

∞

0

= 1
𝜆𝑒−0

= 1
𝜆

We can follow a similar process to get 𝐸[𝑋2] (using the law of the unconscious statistician!).
We can write

𝐸[𝑋2] = ∫
∞

0
𝑥2𝜆𝑒−𝜆𝑥𝑑𝑥

= 𝜆 ∫
∞

0
𝑥2𝑒−𝜆𝑥𝑑𝑥
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And now we need integration by parts again! Set 𝑢 = 𝑥2, 𝑑𝑣 = 𝑒−𝜆𝑥𝑑𝑥. Then 𝑑𝑢 = 2𝑥𝑑𝑥 and
𝑣 = −1

𝜆 𝑒−𝜆𝑥. Since ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢, we can continue

𝐸[𝑋] = 𝜆 ∫
∞

0
𝑥2𝑒−𝜆𝑥𝑑𝑥

= 𝜆 (−𝑥2

𝜆 𝑒−𝜆𝑥∣
∞

0
− ∫

∞

0

−2
𝜆 𝑥𝑒−𝜆𝑥𝑑𝑥)

= 𝜆 (−𝑥2

𝜆 𝑒−𝜆𝑥∣
∞

0
+ 2

𝜆 ∫
∞

0
𝑥𝑒−𝜆𝑥𝑑𝑥)

= 𝜆 (−𝑥2

𝜆 𝑒−𝜆𝑥∣
∞

0
+ 2

𝜆3 )

= 𝜆 (0 + 2
𝜆3 )

= 2
𝜆2

Now we can calculate 𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2 as

𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2 = 2
𝜆2 − 1

𝜆2 = 1
𝜆2

And so we have 𝐸[𝑋] = 1
𝜆 and 𝑉 𝑎𝑟[𝑋] = 1

𝜆2 .

Problem 2: Show that an exponentially distributed random variable is “memoryless”,
i.e. show that Pr(𝑋 > 𝑠 + 𝑥 ∣ 𝑋 > 𝑠) = Pr(𝑋 > 𝑥), ∀𝑠.
Solution:

Recall that the CDF of an exponential distribution is given by 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥. Thanks to
Bayes rule, we can write

Pr(𝑋 > 𝑠 + 𝑥 ∣ 𝑋 > 𝑠) = Pr(𝑋 > 𝑠 + 𝑥, 𝑋 > 𝑠)
Pr(𝑋 > 𝑠)

= Pr(𝑋 > 𝑠 + 𝑥)
Pr(𝑋 > 𝑠)

= 1 − Pr(𝑋 < 𝑠 + 𝑥)
1 − Pr(𝑋 < 𝑠)

= 1 − 𝐹(𝑠 + 𝑥)
1 − 𝐹(𝑠)
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where the second equality is true because 𝑥 > 0. Then we can write

Pr(𝑋 > 𝑠 + 𝑥 ∣ 𝑋 > 𝑠) = 1 − 𝐹(𝑠 + 𝑥)
1 − 𝐹(𝑠)

= 1 − (1 − 𝑒−𝜆(𝑠+𝑥))
1 − (1 − 𝑒−𝜆𝑠)

= 𝑒−𝜆(𝑠+𝑥)

𝑒−𝜆𝑠

= 𝑒−𝜆𝑠−𝜆𝑥

𝑒−𝜆𝑠

= 𝑒−𝜆𝑥

= 1 − 𝐹(𝑥)
= Pr(𝑋 > 𝑥)

and we’re done!

Problem 3: Suppose 𝑋 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/𝜆), and 𝑌 ∣ 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋). Show that 𝑌 ∼
𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(1/(1 + 𝜆)).
Solution:

Note that we can write 𝑓(𝑥, 𝑦) = 𝑓(𝑦 ∣ 𝑥)𝑓(𝑥), and 𝑓(𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥. Then

𝑓(𝑥, 𝑦) = ( 1
𝜆𝑒−𝑥/𝜆) (𝑥𝑦𝑒−𝑥

𝑦! )

And so,

𝑓(𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥

= ∫ ( 1
𝜆𝑒−𝑥/𝜆) (𝑥𝑦𝑒−𝑥

𝑦! ) 𝑑𝑥

= 1
𝜆𝑦! ∫ 𝑥𝑦𝑒−𝑥(1+𝜆)/𝜆𝑑𝑥

And we can again use integration by parts! Let 𝑢 = 𝑥𝑦 and 𝑑𝑣 = 𝑒−𝑥(1+𝜆)/𝜆𝑑𝑥. Then we have
𝑑𝑢 = 𝑦𝑥𝑦−1𝑑𝑥 and 𝑣 = − 𝜆

1+𝜆𝑒−𝑥(1+𝜆)/𝜆, and we can write
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𝑓(𝑦) = 1
𝜆𝑦! ∫ 𝑥𝑦𝑒−𝑥(1+𝜆)/𝜆𝑑𝑥

= 1
𝜆𝑦! (−𝑥𝑦 𝜆

1 + 𝜆𝑒−𝑥(1+𝜆)/𝜆∣
𝑥=∞

𝑥=0
+ ∫ 𝜆

1 + 𝜆𝑒−𝑥(1+𝜆)/𝜆𝑦𝑥𝑦−1𝑑𝑥)

= 1
𝜆𝑦! (∫ 𝜆

1 + 𝜆𝑒−𝑥(1+𝜆)/𝜆𝑦𝑥𝑦−1𝑑𝑥)

= 1
𝜆𝑦! ( 𝜆

1 + 𝜆) 𝑦 (∫ 𝑒−𝑥(1+𝜆)/𝜆𝑥𝑦−1𝑑𝑥)

This looks gross, but it’s actually not so bad. Note that, since 𝑌 is Poisson, it can only take
integer values beginning at 1! Then we can repeat the process of integration by parts 𝑦 times
in order to get rid of 𝑥𝑦… term on the inside of the integral. Specifically, each time we do this
process we will pull out a ( 𝜆

1+𝜆), and a 𝑦 − 𝑖 for the 𝑖th integration by parts step (try this one
or two steps for yourself to see how it will simplify if you find this unintuitive!). We end up
with,

𝑓(𝑦) = 1
𝜆𝑦! ( 𝜆

1 + 𝜆)
𝑦

𝑦!

= 1
𝜆 ( 𝜆

1 + 𝜆)
𝑦

Now let 𝑝 = 1
1+𝜆 . If we can show that 𝑓(𝑦) ∼ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝) then we’re done. Note that

1 − 𝑝 = 𝜆/(1 + 𝜆). We have

𝑓(𝑦) = 1
𝜆(1 − 𝑝)𝑦

= 1
𝜆(1 − 𝑝)𝑦−1(1 − 𝑝)

= (1 − 𝑝)𝑦−1 1
𝜆 ( 𝜆

1 + 𝜆)

= (1 − 𝑝)𝑦−1 ( 1
1 + 𝜆)

= (1 − 𝑝)𝑦−1𝑝

which is exactly the pdf of a geometric random variable with parameter 𝑝 and trials that begin
at 1.

An alternative solution (which perhaps embodies the phrase “work smarter, not harder”) ac-
tually doesn’t involve integration by parts at all! As statisticians, we typically like to avoid
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actually integrating anything whenever possible, and this is often achieved by manipulating
algebra enough to essentially “create” a pdf out of what we see (since pdfs integrate to 1!).
Massive props to a student for solving this problem in a much “easier” way, answer below:

𝑓(𝑦) = ∫
∞

0
𝑓(𝑦 ∣ 𝑥)𝑓(𝑥)𝑑𝑥

= ∫
∞

0
( 1
𝜆𝑒− 𝑥

𝜆 )(𝑥𝑦

𝑦! 𝑒−𝑥)𝑑𝑥

= 1
𝜆𝑦! ∫

∞

0
𝑥𝑦𝑒− 𝑥

𝜆 (1+𝜆)𝑑𝑥

= 1
𝜆𝑦! ∫

∞

0

(1+𝜆
𝜆 )𝑦+1

(1+𝜆
𝜆 )𝑦+1

Γ(𝑦 + 1)
Γ(𝑦 + 1)𝑥(𝑦+1)−1𝑒− 𝑥

𝜆 (1+𝜆)𝑑𝑥

= Γ(𝑦 + 1)
𝜆𝑦!(1+𝜆

𝜆 )𝑦+1 ∫
∞

0

(1+𝜆
𝜆 )𝑦+1

Γ(𝑦 + 1) 𝑥(𝑦+1)−1𝑒− 𝑥
𝜆 (1+𝜆)𝑑𝑥

= Γ(𝑦 + 1)
𝜆𝑦!(1+𝜆

𝜆 )𝑦+1 (1)

= 𝑦!
𝜆𝑦!(1+𝜆

𝜆 )𝑦+1

= 𝜆−1

(1+𝜆
𝜆 )𝑦+1

= 𝜆𝑦

(1 + 𝜆)𝑦+1

= 1
(1 + 𝜆)

𝜆𝑦

(1 + 𝜆)𝑦

= 1
(1 + 𝜆)(1 − 1

(1 + 𝜆))𝑦

= 𝑝(1 − 𝑝)𝑦 (where 𝑝 = 1
1 + 𝜆)

Note that we arrive at a slightly different answer with this approach. Specifically, we arrive at
the pdf of a geometric random variable with parameter 𝑝 and trials that begin at 0, as opposed
to 1. There’s some subtlety here that we’re going to choose to ignore.

Problem 4: Suppose that 𝑋 ∼ 𝑁(𝜇, 𝜎2), and let 𝑌 = 𝑋−𝜇
𝜎 . Find the distribution of 𝑌

(simplifying all of your math will be useful for this problem).

Solution:

To solve this problem, we can use the theorem on transforming continuous random variables.
We must first define our function 𝑔 that relates 𝑋 and 𝑌 . In this case, we have 𝑔(𝑎) = 𝑎−𝜇

𝜎 .
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Now all we need to do is collect the mathematical “pieces” we need to use theorem: 𝑔−1(𝑎),
and 𝑔′(𝑎), and finally, the pdf of a normal random variable. We have

𝑓𝑋(𝑥) = 1√
2𝜋𝜎2 exp(− 1

2𝜎2 (𝑥 − 𝜇)2)

𝑔−1(𝑎) = 𝜎𝑎 + 𝜇

𝑔′(𝑎) = 𝜕
𝜕𝑎 (𝑎 − 𝜇

𝜎 ) = 1
𝜎

Putting it all together, we have

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑔−1(𝑦)) × 1
𝑔′(𝑔−1(𝑦))

= 1√
2𝜋𝜎2 exp(− 1

2𝜎2 (𝜎𝑦 + 𝜇 − 𝜇)2) × 𝜎

= 1√
2𝜋𝜎 exp(− 1

2𝜎2 (𝜎𝑦)2) × 𝜎

= 1√
2𝜋 exp(− 1

2𝜎2 𝜎2𝑦2)

= 1√
2𝜋 exp(−1

2𝑦2)

and note that this is the pdf of a normally distributed random variable with mean 0 and
variance 1! Thus, we have shown that 𝑋−𝜇

𝜎 ∼ 𝑁(0, 1). Fun Fact: If this random variable
reminds you of a Z-score, it should!

Problem 5: Suppose the joint pdf of two random variables 𝑋 and 𝑌 is given by 𝑓𝑋,𝑌 (𝑥, 𝑦) =
𝜆𝛽𝑒−𝑥𝜆−𝑦𝛽. Determine if 𝑋 and 𝑌 are independent, showing why or why not.

Solution:

To determine whether 𝑋 and 𝑌 are independent (or not), we need to determine if their joint
pdf is “separable.” Doing some algebra, we can see that

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝜆𝛽𝑒−𝑥𝜆−𝑦𝛽

= 𝜆𝛽𝑒−𝑥𝜆𝑒−𝑦𝛽

= (𝜆𝑒−𝑥𝜆) (𝛽𝑒−𝑦𝛽)

and so since we can write the joint distribution as a function of 𝑋 multiplied by a function of
𝑌 , 𝑋 and 𝑌 are independent (and in this case, both have exponential distributions).
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Problem 6: Suppose the joint pdf of two random variables 𝑋 and 𝑌 is given by 𝑓𝑋,𝑌 (𝑥, 𝑦) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)(𝑛
𝑦)𝑥𝑦+𝛼−1(1−𝑥)𝑛−𝑦+𝛽−1. Determine if 𝑋 and 𝑌 are independent, showing why or why

not.

Solution:

To determine whether 𝑋 and 𝑌 are independent (or not), we need to determine if their joint
pdf is “separable.” Right away, we should note that a piece of the pdf contains 𝑥𝑦, and
therefore we are never going to be able to fully separate out this joint pdf into a function
of 𝑥 times a function 𝑦. Therefore, 𝑋 and 𝑌 are not independent. In this case, we actually
have 𝑋 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽), and 𝑌 ∣ 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑦) (we’ll return to this example in the Bayes
chapter!).

Problem 7: Let 𝑋 and 𝑌 be independent random variables with 𝑋 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) and
𝑌 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1). Find the joint distribution of 𝑍 = 𝑋 − 𝑌 and 𝑊 = 𝑋 + 𝑌 , and use this
joint distribution to show that 𝑍 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1).
Solution:

Let 𝑋 and 𝑌 be independent random variables with 𝑋 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) and 𝑌 ∼
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1). Find the joint distribution of 𝑍 = 𝑋 − 𝑌 and 𝑊 = 𝑋 + 𝑌 , and use this joint
distribution to show that 𝑍 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1).
We’ll need a couple things before we can directly apply the Jacobian method:

• The joint distribution, 𝜋𝑋,𝑌 (𝑥, 𝑦)
• Our function 𝑓(𝑥, 𝑦) and its inverse

• Our Jacobian matrix, given by 𝐽𝑓(𝑧, 𝑤) = (
𝜕𝑥
𝜕𝑧

𝜕𝑥
𝜕𝑤𝜕𝑦

𝜕𝑧
𝜕𝑦
𝜕𝑤

)

• Our Jacobian, given by ∣𝐽𝑓(𝑧, 𝑤)∣

• The support of the joint distribution 𝜋𝑍,𝑊 (𝑧, 𝑤) (we’ll do this step at the end).

Since 𝑋 and 𝑌 are independent, we have

𝜋𝑋,𝑌 (𝑥, 𝑦) = 𝑒−𝑥𝑒−𝑦 = 𝑒−𝑥−𝑦

Now we must determine what our function 𝑓 is, and its inverse. From the problem set-up, we
have 𝑓(𝑥, 𝑦) ⟼ (𝑥 − 𝑦, 𝑥 + 𝑦). To find the inverse function, we can rearrange these outputs
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to define 𝑥 and 𝑦 solely in terms of 𝑧 and 𝑤. Some algebra included below:

𝑥 = 𝑧 + 𝑦
𝑦 = 𝑤 − 𝑥
𝑥 = 𝑧 + 𝑤 − 𝑥

2𝑥 = 𝑧 + 𝑤
𝑥 = 𝑧 + 𝑤

2 (Our first equation)!

𝑦 = 𝑤 − 𝑧 + 𝑤
2

𝑦 = 2𝑤 − 𝑧 − 𝑤
2

𝑦 = 𝑤 − 𝑧
2 (Our second equation!)

Which gives us 𝑓−1(𝑧, 𝑤) ⟼ (𝑧+𝑤
2 , 𝑤−𝑧

2 ). The Jacobian matrix is then given by

𝐽𝑓(𝑧, 𝑤) = (
𝜕( 𝑧+𝑤

2 )
𝜕𝑧

𝜕( 𝑧+𝑤
2 )

𝜕𝑤𝜕( 𝑤−𝑧
2 )

𝜕𝑧
𝜕( 𝑤−𝑧

2 )
𝜕𝑤

) = (
1
2

1
2−1

2
1
2
)

and the Jacobian is given by |𝐽𝑓(𝑧, 𝑤)| = (1/2)(1/2) − (1/2)(−1/2) = 1/2.
Now we determine the support of the distribution 𝜋𝑍,𝑊 (𝑧, 𝑤). Since 𝑋 and 𝑌 are exponential,
we know that

0 ≤ 𝑥 < ∞
0 ≤ 𝑦 < ∞

Plugging in some things and rearranging, we get

0 ≤ 𝑧 + 𝑤
2 < ∞

0 ≤ 𝑧 + 𝑤 < ∞
− 𝑧 ≤ 𝑤 < ∞ (or) − 𝑤 ≤ 𝑧 < ∞

and

0 ≤ 𝑤 − 𝑧
2 < ∞

0 ≤ 𝑤 − 𝑧 < ∞
𝑧 ≤ 𝑤 < ∞

Putting these together, we have −𝑤 ≤ 𝑧 ≤ 𝑤 < ∞, so the support for 𝑧, marginally is given
by [−𝑤, 𝑤]. The support for 𝑤, marginally, is given by [0, ∞), since it is a sum of two random
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variables that have that same support. Note that this therefore means 𝑧 can range from
(−∞, ∞), depending on the value of 𝑤.

We can now finally apply the Jacobian method to obtain 𝜋𝑍,𝑊 (𝑧, 𝑤) using the separate pieces
we have calculated, obtaining:

𝜋𝑍,𝑊 (𝑧, 𝑤) = 𝜋𝑋,𝑌 (𝑓−1(𝑧, 𝑤)) × |𝐽𝑓(𝑧, 𝑤)| × 𝐼{−𝑤 ≤ 𝑧 ≤ 𝑤, 0 ≤ 𝑤 < ∞}

= exp(−𝑧 + 𝑤
2 − 𝑤 − 𝑧

2 ) × 1
2 × 𝐼{−𝑤 ≤ 𝑧 ≤ 𝑤, 0 ≤ 𝑤 < ∞}

= 1
2 exp(−𝑧 − 𝑤 − 𝑤 + 𝑧

2 ) × 𝐼{−𝑤 ≤ 𝑧 ≤ 𝑤, 0 ≤ 𝑤 < ∞}

= 1
2𝑒−𝑤 × 𝐼{−𝑤 ≤ 𝑧 ≤ 𝑤, 0 ≤ 𝑤 < ∞}

Now that we have the joint distribution 𝜋𝑍,𝑊 (𝑧, 𝑤), we must integrate with respect to 𝑊 to
get the marginal distribution of 𝑍. Recall that we have both −𝑧 ≤ 𝑤 < ∞ and 𝑧 ≤ 𝑤 < ∞,
so we consider these two cases separately. We have

𝜋𝑍(𝑧) = {∫∞
𝑧

1
2𝑒−𝑤𝑑𝑤 = −1

2𝑒−𝑤∣∞𝑧 = 1
2𝑒−𝑧 0 ≤ 𝑧 < ∞

∫∞
−𝑧

1
2𝑒−𝑤𝑑𝑤 = −1

2𝑒−𝑤∣∞−𝑧 = 1
2𝑒𝑧 −∞ < 𝑧 ≤ 0

which can equivalently be written as

𝜋𝑍(𝑧) = 1
2𝑒−|𝑧| − ∞ < 𝑧 < ∞

which implies 𝑍 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1).
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2 Maximum Likelihood Estimation

In Probability, you calculated probabilities of events by assuming a probability model for data
and then assuming you knew the value of the parameters in that model. In Mathematical
Statistics, we will similarly write down a probability model but then we will use observed data
to estimate the value of the parameters in that model.

There is more than one technique that you can use to estimate the value of an unknown
parameter. You’re already familiar with one technique—least squares estimation—from
STAT 155. We’ll review the ideas behind that approach later in the course. To start, we’ll
explore two other widely used estimation techniques: maximum likelihood estimation
(this chapter) and the method of moments (next chapter).

Introduction to MLE

To understand maximum likelihood estimation, we can first break down each individual word
in that phrase: (1) maximum, (2) likelihood, (3) estimation. We’ll start in reverse order.

Recall from your introductory statistics course that we are (often) interested in estimating true,
unknown parameters in statistics, using some data. Our best guess at the truth, based on
the data we observe / sample that we have, is an estimate of the truth (given some modeling
assumptions). This is all the “estimation” piece is getting at here. We’re going to be learning
about a method that produces estimates!

The likelihood piece may be less familiar to you. A likelihood is essentially a fancy form
of a function (see the Definitions section for an exact definition), that combines an assumed
probability distribution for your data, with some unknown parameters.* The key here is that
a likelihood is a function. It may look more complicated than a function like 𝑦 = 𝑚𝑥 + 𝑏, but
we can often manipulate them in a similar fashion, which comes in handy when trying to find
the…

Maximum! We’ve maximized functions before, and we can do it again! There are ways
to maximize functions numerically (using certain algorithms, such as Newton-Raphson for
example, which we’ll cover in a later chapter), but we will primarily focus on maximizing
likelihoods analytically in this course to help us build intuition.

Recall from calculus: To maximize a function we…

1. Take the derivative of the function
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2. Set the derivative equal to zero

3. Solve!

4. (double check that the second derivative is negative, so that it’s actually a maximum as
opposed to a minimum)

5. (also check the endpoints)

The last two steps we’ll often skip in this class, since things have a tendency to work out
nicely with most likelihood functions. If we are trying to maximize a likelihood with multiple
parameters, there a few different ways we can go about this. One way (which is nice for
distributions like the multivariate normal) is to place all of the parameters in a vector, write
the distribution in terms of matrices and vectors, and then use matrix algebra to obtain all of
the MLEs for each parameter at once! An alternative way is to take partial derivatives of the
likelihood function with respect to each parameter, and solve a system of equations to obtain
MLEs for each parameter. We’ll see an example of this in Problem Set 1 as well as Worked
Example 2!

One final thing to note (before checking out worked examples and making sure you have a
grasp on definitions and theorems) is that it is often easier to maximize the log-likelihood as
opposed to the the likelihood… un-logged. This is for a variety of reasons, one of which is
that many common probability density functions contain some sort of 𝑒𝑥 term, and logging
(natural logging) simplifies that for us. Another one is that log rules sometimes make taking
derivatives easier. The value of a parameter that maximizes the log-likelihood is the same
value that maximizes the likelihood, un-logged (since log is a monotone, increasing function).
This is truly just a convenience thing!

When maximizing the “usual” way doesn’t work…

To maximize a function what I’m calling the “usual” way involves the five steps listed above.
Unfortunately, sometimes this doesn’t work. We typically recognize that the process won’t
work once we get to step 3, and realize that “solving” ends up giving us an MLE that doesn’t
depend at all on our data. When this happens, it’s usually because the MLE is an order
statistic (see Definitions section of this chapter), and usually because the distribution of our
random variable has a range that depends on our unknown parameter. An example of this
(that will appear on your homework) occurs when 𝑋1, … , 𝑋𝑛 ∼ Uniform(0, 𝜃). In this case,
the range of 𝑋𝑖 depends directly on 𝜃, since it cannot be any greater than 𝜃.
In these cases, the process of finding the MLE for our unknown parameter usually involves
plotting the likelihood as a function of the unknown parameter. We then look at where
that function achieves its maximum (usually at one of the endpoints), and determine which
observation (again, typically the minimum or maximum) will maximize our likelihood. An
example of this can be found in Example 5.2.4 in our course textbook.

28



Maximum Likelihood: Does it make sense? Is it even “good”?

Let’s think for a minute about why maximum likelihood, as a procedure for producing estimates
of parameters, might make sense. Given a distributional assumption* (a probability density
function) for independent random variables, we define a “likelihood” as a product of their
densities. We can think of this intuitively as just the “likelihood” or “chance” that our data
occurs, given a specific distribution. Maximum likelihood estimators then tell us, given that
assumed likelihood, what parameter values make our observed data most likely to
have occurred.

So. Does it make sense? I would argue, intuitively, yes! Yes, it does. Is it good? That’s
perhaps a different question with a more complicated answer. It’s a good baseline, certainly,
and foundational to much of statistical theory. We’ll see in a later chapter that maximum
likelihood estimates have good properties related to having minimal variance among a larger
class of estimators (yay!), but the maximum likelihood estimators we will consider in this course
rely on parametric assumptions (i.e. we assume that the data follows a specific probability
distribution in order to calculate MLEs). There are ways around these assumptions, but they
are outside the scope of our course.

* Note that distributions are only involved in parametric methods, as opposed to non-
parametric and semi-parametric methods, the latter of which are for independent study or a
graduate course in statistics!

Relation to Least-Squares

Recall that we typically write a simple linear regression model in one of two ways. For 𝑛
observations 𝑋1, … , 𝑋𝑛 with outcomes 𝑌1, … , 𝑌𝑛, we can write

𝐸[𝑌𝑖 ∣ 𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖

or we can write

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖

where 𝐸[𝜖𝑖] = 0. The latter equation makes it more clear where residuals come into play (they
are just given by 𝜖𝑖), and the former perhaps makes it more clear why the word “average”
usually finds its way into our interpretations of regression coefficients. The second form,
however, allows us to make it more clear how we would write up a “least-squares” equation.

Recall that the least-squares line (or, line of “best” fit) is the line that minimizes the sum of
squared residuals. Parsing these words out, note that our residuals can be written as
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𝜖𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖.

Squared residuals are then written as

𝜖2
𝑖 = (𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2,

and finally, the sum of squared residuals is given by

𝑛
∑
𝑖=1

𝜖2
𝑖 =

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2

We can find what values of 𝛽0 and 𝛽1 minimize this sum by taking partial derivatives, setting
equations equal to zero, and solving. It turns out that if let 𝜖𝑖

𝑖𝑖𝑑∼ 𝑁(0, 𝜎2) where 𝜎2 is known,
then the MLE for 𝛽0 and 𝛽1 are equivalent to the values of 𝛽0 and 𝛽1 that minimize the sum
of squared residuals!

2.1 Learning Objectives

By the end of this chapter, you should be able to…

• Derive maximum likelihood estimators for parameters of common probability density
functions

• Calculate maximum likelihood estimators “by hand” for common probability density
functions

• Explain (in plain English) why maximum likelihood estimation is an intuitive approach
to estimating unknown parameters using a combination of (1) observed data, and (2) a
distributional assumption

2.2 Concept Questions

1. What is the intuition behind the maximum likelihood estimation (MLE) approach?

2. What are the typical steps to find a MLE?

3. Are there ever situations when the typical steps to finding a MLE don’t work? If so,
what can we do instead to find the MLE?

4. How do the steps to finding a MLE change when we have more than one unknown
parameter?
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2.3 Definitions

You are expected to know the following definitions:

Parameter

In a frequentist* framework, a parameter is a fixed, unknown truth (very philosophical). By
fixed, I mean “not random”. We assume that there is some true unknown value, governing the
generation of all possible random observations of all possible people and things in the whole
world. We sometimes call this unknown governing process the “superpopulation” (think: all
who ever have been, all who are, and all who ever will be).

Practically speaking, parameters are things that we want to estimate, and we will estimate
them using observed data!

*Two main schools of thought in statistics are: (1) Frequentist (everything you’ve ever learned
so far in statistics, realistically), and (2) Bayesian. We’ll cover the latter, and differences
between the two, in a later chapter. There’s also technically Fiducial inference as a third
school of thought, but that one’s never been widely accepted.

Statistic/Estimator

A statistic (or “estimator”) is a function of your data, used to “estimate” an unknown param-
eter. Often, statistics/estimators will be functions of means or averages, as we’ll see in the
worked examples for this chapter!

Likelihood Function

Let 𝑥1, … , 𝑥𝑛 be a sample of size 𝑛 of independent observations from the probability density
function 𝑓𝑋(𝑥 ∣ 𝜃), where 𝜃 is a set of unknown parameters that define the pdf. Then the
likelihood function 𝐿(𝜃) is the product of the pdf evaluated at each 𝑥𝑖,

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓𝑋(𝑥𝑖 ∣ 𝜃).

Note that this looks exactly like the joint pdf for 𝑛 independent random variables, but it is
interpreted differently. A likelihood is a function of parameters, given a set of observations
(random variables). A joint pdf is a function of random variables.

Note: The likelihood function is one of the reasons why we like independent observations so
much! If observations aren’t independent, we can’t simply multiply all of their pdfs together
to get a likelihood function.

Maximum Likelihood Estimate (MLE)
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Let 𝐿(𝜃) = ∏𝑛
𝑖=1 𝑓𝑋(𝑥𝑖 ∣ 𝜃) be the likelihood function corresponding to a random sample of

observations 𝑥1, … , 𝑥𝑛. If 𝜃𝑒 is such that 𝐿(𝜃𝑒) ≥ 𝐿(𝜃) for all possible values 𝜃, then 𝜃𝑒 is
called a maximum likelihood estimate for 𝜃.
Log-likelihood

In statistics, when we say “log,” we essentially always mean “ln” (or, natural log). The log-
likelihood is then, hopefully unsurprisingly, given by log(𝐿(𝜃)). One thing that’s useful to note
(and will come in handy when calculating MLEs, is that the log of a product is equal to a sum
of logs. For likelihoods, that means

log(𝐿(𝜃)) = log(
𝑛

∏
𝑖=1

𝑓𝑋(𝑥𝑖 ∣ 𝜃)) =
𝑛

∑
𝑖=1

log(𝑓𝑋(𝑥𝑖 ∣ 𝜃))

This will end up making itmuch easier to take derivatives than needing to deal with products!

Order Statistic

The 𝑘th order statistic is equal to a sample’s 𝑘th smallest value. Practically speaking, there are
essentially three order statistics we typically care about: the minimum, the median, and the
maximum. We denote the minimum (or, first order statistic) in a sample of random variables
𝑋1, … , 𝑋𝑛 as 𝑋(1) , the maximum as 𝑋(𝑛), and the median 𝑋(𝑚+1) where 𝑛 = 2𝑚 + 1 when 𝑛
is odd. Note that median is in fact not an order statistic if 𝑛 is even (since the median is an
average of two values, 𝑋(𝑚) and 𝑋(𝑚+1), in this case.

See Example 5.2.4 in the Textbook for an example of where order statistics occasionally come
into play when calculating maximum likelihood estimates.

2.4 Theorems

None for this chapter!

2.5 Worked Examples

Problem 1: Suppose we observe 𝑛 independent observations 𝑋1, … , 𝑋𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝),
where 𝑓𝑋(𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥. Find the MLE of 𝑝.
Solution:

We can write the likelihood function as

32



𝐿(𝑝) =
𝑛

∏
𝑖=1

𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖

Then the log-likelihood is given by

log(𝐿(𝑝)) = log[
𝑛

∏
𝑖=1

𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖]

=
𝑛

∑
𝑖=1

log [𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖]

=
𝑛

∑
𝑖=1

[log(𝑝𝑥𝑖) + log((1 − 𝑝)1−𝑥𝑖)]

=
𝑛

∑
𝑖=1

[𝑥𝑖 log(𝑝) + (1 − 𝑥𝑖) log(1 − 𝑝)]

= log(𝑝)
𝑛

∑
𝑖=1

𝑥𝑖 + log(1 − 𝑝)
𝑛

∑
𝑖=1

(1 − 𝑥𝑖)

= log(𝑝)
𝑛

∑
𝑖=1

𝑥𝑖 + log(1 − 𝑝)(𝑛 −
𝑛

∑
𝑖=1

𝑥𝑖)

We can take the derivative of the log-likelihood with respect to 𝑝, and set it equal to zero…
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𝜕
𝜕𝑝 log(𝐿(𝑝)) = 𝜕

𝜕𝑝 [log(𝑝)
𝑛

∑
𝑖=1

𝑥𝑖 + log(1 − 𝑝)(𝑛 −
𝑛

∑
𝑖=1

𝑥𝑖)]

= ∑𝑛
𝑖=1 𝑥𝑖
𝑝 − 𝑛 − ∑𝑛

𝑖=1 𝑥𝑖
1 − 𝑝

0 ≡ ∑𝑛
𝑖=1 𝑥𝑖
𝑝 − 𝑛 − ∑𝑛

𝑖=1 𝑥𝑖
1 − 𝑝

∑𝑛
𝑖=1 𝑥𝑖
𝑝 = 𝑛 − ∑𝑛

𝑖=1 𝑥𝑖
1 − 𝑝

(1 − 𝑝)
𝑛

∑
𝑖=1

𝑥𝑖 = 𝑝(𝑛 −
𝑛

∑
𝑖=1

𝑥𝑖)
𝑛

∑
𝑖=1

𝑥𝑖 − 𝑝
𝑛

∑
𝑖=1

𝑥𝑖 = 𝑝𝑛 − 𝑝
𝑛

∑
𝑖=1

𝑥𝑖

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑝𝑛

1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑝

and by solving for 𝑝, we get that the MLE of 𝑝 is equal to 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖. We will often see
that the MLEs of parameters are functions of sample averages (in this case, just the identity
function!).

Problem 2: Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are a random sample from the Normal pdf with param-
eters 𝜇 and 𝜎2:

𝑓𝑋(𝑥; 𝜇, 𝜎2) = 1√
2𝜋𝜎2 𝑒− 1

2𝜎2 (𝑥−𝜇)2 ,

for −∞ < 𝑥 < ∞, −∞ < 𝜇 < ∞, and 𝜎2 > 0. Find the MLEs of 𝜇 and 𝜎2. (Note that this
is Question 5 on the MLE section of Problem Set 1! For your HW, try your best to do this
problem from scratch, without looking at the course notes!)

Solution:

Since we are dealing with a likelihood with two parameters, we’ll need to solve a system of
equations to obtain the MLEs for 𝜇 and 𝜎2.
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log(𝐿(𝜇, 𝜎2)) = log(
𝑛

∏
𝑖=1

1√
2𝜋𝜎2 exp(− 1

2𝜎2 (𝑥𝑖 − 𝜇)2))

=
𝑛

∑
𝑖=1

[log( 1√
2𝜋𝜎2 ) − 1

2𝜎2 (𝑥𝑖 − 𝜇)2]

=
𝑛

∑
𝑖=1

[−1
2 log(2𝜋𝜎2) − 1

2𝜎2 (𝑥𝑖 − 𝜇)2]

= −𝑛
2 log(2𝜋𝜎2) − 1

2𝜎2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

Now we need to find 𝜕
𝜕𝜎2 log(𝐿(𝜇, 𝜎2)) and 𝜕

𝜕𝜇 log(𝐿(𝜇, 𝜎2)). Let’s make our lives a little bit
easier by setting 𝜎2 ≡ 𝜃 (so we don’t trip ourselves up with the exponent). We get

𝜕
𝜕𝜃 log(𝐿(𝜇, 𝜃)) = 𝜕

𝜕𝜃 (−𝑛
2 log(2𝜋𝜃) − 1

2𝜃
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2)

= −2𝜋𝑛
4𝜋𝜃 + ∑𝑛

𝑖=1(𝑥𝑖 − 𝜇)2

2𝜃2

= −𝑛
2𝜃 + ∑𝑛

𝑖=1(𝑥𝑖 − 𝜇)2

2𝜃2

and

𝜕
𝜕𝜇 log(𝐿(𝜇, 𝜃)) = 𝜕

𝜕𝜇 (−𝑛
2 log(2𝜋𝜃) − 1

2𝜃
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2)

= 𝜕
𝜕𝜇 (− 1

2𝜃
𝑛

∑
𝑖=1

(𝑥2
𝑖 − 2𝜇𝑥𝑖 + 𝜇2))

= 𝜕
𝜕𝜇 (− 1

2𝜃(
𝑛

∑
𝑖=1

𝑥2
𝑖 − 2𝜇

𝑛
∑
𝑖=1

𝑥𝑖 + 𝑛𝜇2))

= 𝜕
𝜕𝜇 (− 1

2𝜃(−2𝜇
𝑛

∑
𝑖=1

𝑥𝑖 + 𝑛𝜇2))

= 𝜕
𝜕𝜇 (∑𝑛

𝑖=1 𝑥𝑖
𝜃 𝜇 − 𝑛

2𝜃𝜇2)

= ∑𝑛
𝑖=1 𝑥𝑖
𝜃 − 𝑛

𝜃 𝜇
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We now have the following system of equations to solve:

0 ≡ −𝑛
2𝜃 + ∑𝑛

𝑖=1(𝑥𝑖 − 𝜇)2

2𝜃2

0 ≡ ∑𝑛
𝑖=1 𝑥𝑖
𝜃 − 𝑛

𝜃 𝜇

Typically, we solve one of the equations for one of the parameters, plug that into the other
equation, and then go from there. We’ll start by solving the second equation for 𝜇.

0 = ∑𝑛
𝑖=1 𝑥𝑖
𝜃 − 𝑛

𝜃 𝜇

𝑛
𝜃 𝜇 = ∑𝑛

𝑖=1 𝑥𝑖
𝜃

𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

Well that’s convenient! We already have the MLE for 𝜇 as being just the sample average.
Plugging this into the first equation in our system we obtain

0 = −𝑛
2𝜃 + ∑𝑛

𝑖=1(𝑥𝑖 − 𝜇)2

2𝜃2

0 = −𝑛
2𝜃 + ∑𝑛

𝑖=1(𝑥𝑖 − 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖)2

2𝜃2

𝑛
2𝜃 = ∑𝑛

𝑖=1(𝑥𝑖 − 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖)2

2𝜃2

𝑛 = ∑𝑛
𝑖=1(𝑥𝑖 − 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖)2

𝜃
𝜃 = 1

𝑛
𝑛

∑
𝑖=1

(𝑥𝑖 − 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖)2]

𝜃 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

where ̄𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖. And so finally, we have that the MLE for 𝜎2 is given by 1
𝑛 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2,
and the MLE for 𝜇 is given by ̄𝑥!
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3 Method of Moments

At this point in the course, we’ve now seen one (hopefully intuitive) way to obtain estimators
for unknown parameters in probability distributions: maximum likelihood estimation. An
alternative approach to producing a “reasonable” estimator for an unknown parameter is
called the “Method of Moments.” As the name implies, this method uses moments to derive
estimators! Recall from probability theory that the 𝑟th moment of a probability distribution
for 𝑋 is given by 𝐸[𝑋𝑟]. We can make use of relationships that between theoretical moments
and sample moments to derive reasonable estimators!

In general, the steps involved in obtaining a MOM estimator are:

1. Determine how many equations are in the system we need to solve

2. Find the theoretical moments

3. Set theoretical moments equal to sample moments

4. Solve!

Why do we need more than one approach to obtain estimators?

We already have maximum likelihood estimation, and it seems reasonable, so why might we
want another approach to obtaining estimates? A few reasons!

One is that estimators vary with regards their theoretical “properties” (as we’ll see in the
following chapters). These properties are one way to define how “good” an estimator is, and
we ideally want our estimators to be the best of the best.

Another reason why we might sometimes want another approach to obtaining estimators,
quite frankly, is that maximum likelihood estimators are sometimes a pain to calculate. In
some cases, there isn’t even a closed form solution for the parameter we’re trying to estimate.
In these scenarios, we need numerical optimization in order to obtain maximum likelihood
estimators. While numerical optimization isn’t the end of the world (it’s actually often quite
easy to implement), it can be very computationally intensive for more complex likelihoods.
In general, if we can obtain a closed form estimator analytically (via calculus/algebra, for
example), we’ll be better off in the long run.* With the method of moments approach, it is
often much easier to obtain a closed form estimator analytically. An example of this can be
found in Example 5.2.7 in the course textbook.

37



* This is mostly a function the fact that much statistics research focuses on developing new
methods for solving problems and analyzing data (think: linear regression but fancier, linear
regression but new somehow, etc.). Statistics is inherently practical. You (probably) want any
methods that you develop to be practically usable by people who are perhaps not statisticians.
No one is going to use your method if it takes an unreasonably long time to compute an
estimator. Imagine how irritating it would be if it took your machine two days to compute
linear regression coefficients in R, for example.

3.1 Learning Objectives

By the end of this chapter, you should be able to…

• Derive method of moments estimators for parameters of common probability density
functions

• Explain (in plain English) why method of moments estimation is an intuitive approach
to estimating unknown parameters

3.2 Concept Questions

1. What is the intuition behind the method of moments (MOM) procedure for estimating
unknown parameters?

2. What are the typical steps to find a MOM estimator?

3. What advantages does the MOM approach offer compared to MLE?

4. Do the MOM and MLE approaches always yield the same estimate?

3.3 Definitions

You are expected to know the following definitions:

Theoretical Moment

The 𝑟𝑡ℎ theoretical moment of a probability distribution is given by 𝐸[𝑋𝑟]. For example, when
𝑟 = 1, the 𝑟𝑡ℎ moment is just the expectation of the random variable 𝑋.

Sample Moment

The 𝑟𝑡ℎ sample moment of a probability distribution is given by 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑟
𝑖 , for a random

sample of observations 𝑥1, … , 𝑥𝑛.
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Method of Moments Estimates

Let 𝑥1, … , 𝑥𝑛 be a random sample of observations from the pdf 𝑓𝑋(𝑥 ∣ 𝜃). The method of
moments estimates are then the solutions to the set of 𝑠 equations given by

𝐸[𝑋] = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

𝐸[𝑋2] = 1
𝑛

𝑛
∑
𝑖=1

𝑥2
𝑖

⋮

𝐸[𝑋𝑠] = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑠
𝑖

If our pdf depends on only a single unknown parameter, we only need to solve the first equation.
If we have two unknown parameters, we need to solve the system of the first two equations.
So on and so forth.

3.4 Theorems

None for this chapter!

3.5 Worked Examples

In general (for these worked examples as well as the problem sets), I do not expect you to
calculate theoretical moments by hand. We practiced that in the probability review chapter,
and now we can use those known theoretical moments to make our lives easier.

Problem 1: Suppose 𝑋1, … , 𝑋𝑛 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆). Find the MLE of 𝜆 and the MOM estimator
of 𝜆.
Solution:

To obtain the MLE, note that we can write the likelihood as

𝐿(𝜆) =
𝑛

∏
𝑖=1

𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!

and the log-likelihood as
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log(𝐿(𝜆)) =
𝑛

∑
𝑖=1

[𝑥𝑖 log(𝜆) − 𝜆 − log(𝑥𝑖!)]

where I’ve used one “log rule” in the above to simplify: log(𝑎𝑏) = 𝑏 × 𝑙𝑜𝑔(𝑎). Taking the
derivative of the log-likelihood and setting it equal to zero, we obtain

𝜕
𝜕𝜆 log(𝐿(𝜆)) = 1

𝜆
𝑛

∑
𝑖=1

𝑥𝑖 − 𝑛

0 ≡ 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛

𝑛 = 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖

𝜆 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

and so the MLE for 𝜆 is the sample average. To obtain the MOM estimator for 𝜆, first note
that the pdf contains only one parameter. Therefore, we only need to set the first theoretical
moment equal to the first sample moment, and solve. Note that the first theoretical moment
of a Poisson distribution is 𝐸[𝑋] = 𝜆, and so equating this to the first sample moment, we
obtain that the MOM estimator for 𝜆 is again, just the sample average! Much “easier” to
compute than the MLE, in this case.

Problem 2: Suppose 𝑋1, … , 𝑋𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃). Find the MOM estimator for 𝜃.
Solution:

Note that our pdf contains only one parameter. Then we only need to solve a “system” of one
equation. We have

𝐸[𝑋] = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

𝜃 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

and we’re done! The system is pretty easy to “solve” when the theoretical moment is exactly
the parameter we’re interested in.

Problem 3: Suppose 𝑌1, … , 𝑌𝑛 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜃). Find the MOM estimator for 𝜃.
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Solution:

Note that our pdf contains only one parameter. Then we only need to solve a “system” of one
equation. We have

𝐸[𝑌 ] = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖

𝜃
2 = 1

𝑛
𝑛

∑
𝑖=1

𝑦𝑖

𝜃 = 2 ̄𝑦

And so the MOM estimator for 𝜃 is 2 times the sample mean. Note that this is an example
where the MOM estimator and MLE are not the same (you derived the MLE on your first
problem set)!
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4 Properties of Estimators

Now that we’ve developed the tools for deriving estimators of unknown parameters, we can
start thinking about different metrics for determining how “good” our estimators actually are.
In general, we like our estimators to be:

• Unbiased: Our estimate should be estimating what it’s supposed to be estimating, for
lack of a better phrase. Bias (or, unbiased-ness, in this case) is related to accuracy. In
introductory statistics, you likely discussed sample bias (or, whether or not the data
you collect is representative of the population you are trying to make inference on) and
information bias (or, whether the values of the data you collect are representative of the
people who report them). If you have a biased sample or biased information, your esti-
mates (think, regression coefficients) are likely going to misrepresent true relationships
in the population.

Bias of estimates has a very specific definition in statistical theory that is distinct from
sample bias and information bias. Questions of sample bias and information bias are
important to consider when collecting and analyzing data, and questions of whether or
not our estimates are biased are important to consider prior to analyzing data.

• Precise: In short, if our estimates are wildly uncertain (think, gigantic confidence inter-
vals), they’ll essentially be of no use to us from a practical perspective. As an extreme
example, consider how you would feel if a new cancer drug was released with very severe
side-effects, but scientists noted that the drug would increase cancer patients expected
survival time by somewhere between 1 and 700 days. Are we really certain enough, in
this case, that the benefits of the drug outweigh the potential costs? What if instead, the
expected survival time would increase between 650 and 700 days? Would that change
your answer?

These types of questions are precisely (ha!) why precision is important. Again, you’ve
likely discussed precision (colloquially) in an introductory statistics course. In statistical
theory, precision (similar to bias) has a very specific definition. So long as our estimates
are unbiased, we want to minimize variance (and therefore increase precision) as much
as we possibly can. Even at the same sample size, some estimates are more precise than
others, which we’ll explore in this chapter.
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The Bias-Variance Trade-off

If you are familiar with machine learning techniques or models for prediction purposes more
generally (as opposed to inference), you may have stumbled upon the phrase “bias-variance
trade-off.” In scenarios where we want to make good predictions for new observations using
a statistical model, one way to measure how “well” our model is predicting new observations
is through minimizing mean squared error. Intuitively, this is something we should want
to minimize: “errors” (the difference between a predicted value and an observed value) are
bad, we square them because the direction of the error (above or below) shouldn’t matter too
much, and average over them because we need a summary measure of all our errors combined,
and an average seems reasonable. In statistical terms, mean squared error has a very specific
definition (see below) as the expected value of what is sometimes called a loss function (where
in this case, loss is defined as squared error loss). We’ll return to this in the decision theory
chapter of our course notes.

It just so happens that we can decompose mean squared error into a sum of two terms: the
variance of our estimator + the bias of our estimator (squared). What this means for us
is that two estimators may have the exact same MSE, but very different variances or biases
(potentially). In general, if we hold MSE constant and imagine increasing the variance of our
estimator, the bias would need to decrease accordingly to maintain the same MSE. This is
where the “trade-off” comes from. MSE is an incredibly commonly used metric for assessing
prediction models, but as we will see, doesn’t necessarily paint a full picture in terms of how
“good” an estimator is. Smaller MSE does not automatically imply “better estimator,” just as
smaller bias (in some cases) does not automatically imply “better estimator.”

Sufficiency

Another property we like to have in an estimator (sometimes) is called sufficiency. I like to
think about sufficiency in terms of minimizing the amount of information we need to retain in
order to get a “complete picture” of what’s going on. Suppose, for example, someone is allergic
to tomatoes. Rather than listing every food that contains tomatoes and saying that they’re
allergic to each of them individually, they could just say that they’re allergic to tomatoes and
call it a day. Stating “tomatoes” is sufficient information in this case for us to get the whole
picture of their allergies!

A similar concept applies to estimators. Recall from the MLE chapter of the notes that we
previously showed that the MLE of a sample proportion is given by �̄�. If I want someone to
be able to obtain the MLE for a sample proportion, I then have a few options. I could give
them:

• Every observation I know, 𝑥1, … , 𝑥𝑛
• Just one number, the sample mean, 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖

• All my observations plus some extra information, just for fun!
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It should hopefully be obvious that you don’t need extra information for fun, but we also don’t
need to know the value of each individual observation. The sample mean is sufficient! Formal
definitions and a relevant theorem to follow.

4.1 Learning Objectives

By the end of this chapter, you should be able to…

• Calculate bias and variance of various estimators for unknown parameters

• Explain the distinction between bias and variance colloquially in terms of precision and
accuracy, and why these properties are important

• Compare estimators in terms of their relative efficiency

• Justify why there exists a bias-variance trade-off, and explain what consequences this
may have when comparing estimators

4.2 Concept Questions

1. Intuitively, what is the difference between bias and precision?

2. What are the typical steps to checking if an estimator is unbiased?

3. How can we construct unbiased estimators?

4. If an estimator is unbiased, is it also asymptotically unbiased? If an estimator is asymp-
totically unbiased, is it necessarily unbiased?

5. When comparing estimators, how can we determine which estimator is more efficient?

6. Why might we care about sufficiency, particularly when thinking about the variance of
unbiased estimators?

7. Describe, in your own words, what the Cramér-Rao inequality tells us.

8. What is the difference between a UMVUE and an efficient estimator? Does one imply
the other?
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4.3 Definitions

You are expected to know the following definitions:

Unbiased

An estimator ̂𝜃 = 𝑔(𝑋1, … , 𝑋𝑛) is an unbiased estimator for 𝜃 if 𝐸[ ̂𝜃] = 𝜃, for all 𝜃.
Asymptotically Unbiased

An estimator ̂𝜃 = 𝑔(𝑋1, … , 𝑋𝑛) is an asymptotically unbiased estimator for 𝜃 if lim
𝑛→∞

𝐸[ ̂𝜃] = 𝜃.

Precision

The precision of a random variable 𝑋 is given by 1
𝑉 𝑎𝑟(𝑋) .

Mean Squared Error (MSE)

The mean squared error of an estimator is given by

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2] = 𝑉 𝑎𝑟( ̂𝜃) + 𝐵𝑖𝑎𝑠( ̂𝜃)2

Sufficient

For some function 𝑇 , 𝑇 (𝑋) is a sufficient statistic for an unknown parameter 𝜃 if the condi-
tional distribution of 𝑋 given 𝑇 (𝑋) does not depend on 𝜃. A “looser” definition is that the
distribution of 𝑋 must depend on 𝜃 only through 𝑇 (𝑋).
Minimal Sufficiency

For some function 𝑇 ∗, 𝑇 ∗(𝑋) is a minimal sufficient statistic for an unknown parameter 𝜃 if
𝑇 ∗(𝑋) is sufficient, and for every other sufficient statistic 𝑇 (𝑋). 𝑇 ∗(𝑋) = 𝑓(𝑇 (𝑋)) for some
function 𝑓 .
Complete

A statistic 𝑇 (𝑋) is complete for an unknown parameter 𝜃 if

𝐸[𝑔(𝑇 (𝑥))] is 𝜃 − free ⟹ 𝑔(𝑇 (𝑥)) is constant, almost everywhere

for a nice function 𝑔.
Importantly, it is equivalent to say that 𝑇 (𝑋) is complete for an unknown parameter 𝜃 if

𝐸[𝑔(𝑇 (𝑥))] = 0 ⟹ 𝑔(𝑇 (𝑥)) = 0 almost everywhere

Relative Efficiency

45



The relative efficiency of an estimator ̂𝜃1 with respect to an estimator ̂𝜃2 is the ratio
𝑉 𝑎𝑟( ̂𝜃2)/𝑉 𝑎𝑟( ̂𝜃1).
Uniformly Minimum-Variance Unbiased Estimator (UMVUE)

An estimator ̂𝜃∗ is the UMVUE if, for all estimators ̂𝜃 in the class of unbiased estimators Θ,

𝑉 𝑎𝑟( ̂𝜃∗) ≤ 𝑉 𝑎𝑟( ̂𝜃)

Score

The score is defined as the first partial derivative with respect to 𝜃 of the log-likelihood function,
given by

𝜕
𝜕𝜃 log𝐿(𝜃 ∣ 𝑥)

Information Matrix

The information matrix* 𝐼(𝜃) for a collection of iid random variables 𝑋1, … , 𝑋𝑛 is the variance
of the score, given by

𝐼(𝜃) = 𝐸 [( 𝜕
𝜕𝜃 log𝐿(𝜃 ∣ 𝑥))

2
] = −𝐸 [ 𝜕2

𝜕𝜃2 log𝐿(𝜃 ∣ 𝑥)]

Note that the above formula is in fact the variance of the score, since we can show that the
expectation of the score is 0 (under some regularity conditions). This is shown as part of the
proof of the C-R lower bound in the Theorems section of this chapter.

The information matrix is sometimes written in terms of a pdf for a single random variable as
opposed to a likelihood (this is what our textbook does, for example). In this case, we have
𝐼(𝜃) = 𝑛𝐼1(𝜃), where the 𝐼1(𝜃) on the right-hand side is defined as 𝐸 [( 𝜕

𝜕𝜃 log 𝑓𝑋(𝑥 ∣ 𝜃))2].
Sometimes (as in the textbook) 𝐼1(𝜃) is written without the subscript 1 which is a slight abuse
of notation that is endlessly confusing (to me, at least). For this set of course notes, we’ll
always specify the information matrix in terms of a pdf for a single random variable with the
subscript 1, for clarity.
*The information matrix is often referred to as the Fisher Information matrix, as it was devel-
oped by Sir Ronald Fisher. Fisher developed much of the core, statistical theory that we use
today. He was also the founding chairman of the University of Cambridge Eugenics Society,
and contributed to a large body of scientific work and public policy that promoted racist and
classist ideals.
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4.4 Theorems

Covariance Inequality (based on the Cauchy-Schwarz inequality)

Let 𝑋 and 𝑌 be random variables. Then,

𝑉 𝑎𝑟(𝑋) ≥ 𝐶𝑜𝑣(𝑋, 𝑌 )2

𝑉 𝑎𝑟(𝑌 )

The proof is quite clear on Wikipedia.

The Factorization Criterion for sufficiency

Consider a pdf for a random variable 𝑋 that depends on an unknown parameter 𝜃, given by
𝜋(𝑥 ∣ 𝜃). The statistic 𝑇 (𝑥) is sufficient for 𝜃 if and only if 𝜋(𝑥 ∣ 𝜃) factors as:

𝜋(𝑥 ∣ 𝜃) = 𝑔(𝑇 (𝑥) ∣ 𝜃)ℎ(𝑥)
where 𝑔(𝑇 (𝑥) ∣ 𝜃) depends on 𝑥 only through 𝑇 (𝑥), and ℎ(𝑥) does not depend on 𝜃.
Note that in the statistics literature this criterion is sometimes referred to as the Fisher-
Neyman Factorization Criterion.

Two proofs available on Wikipedia. The one for the discrete-only case is more intuitive, if
you’d like to look through one of them.

Lehmann-Scheffe Theorem

Suppose that a random variable 𝑋 has pdf given by 𝑓(𝑥 ∣ 𝜃), and that 𝑇 ∗(𝑋) is such that for
every* pair of points (𝑥, 𝑦), the ratio of pdfs

𝑓(𝑦 ∣ 𝜃)
𝑓(𝑥 ∣ 𝜃)

does not depend on 𝜃 if and only if 𝑇 ∗(𝑥) = 𝑇 ∗(𝑦). Then 𝑇 ∗(𝑋) is a minimal sufficient
statistic for 𝜃.
*every pair of points that have the same support as 𝑋.

Proof.

We’ll utilize something called a likelihood ratio (literally a ratio of likelihoods) to prove this
theorem. We’ll also come back to likelihood ratios later in the Hypothesis Testing chapter!

Let 𝜃1 and 𝜃2 be two possible values of our unknown parameter 𝜃. Then a likelihood ratio
comparing densities evaluated at these two values is defined as

47

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
https://en.wikipedia.org/wiki/Sufficient_statistic#Proof


𝐿𝜃1,𝜃2
(𝑥) ≡ 𝑓(𝑥 ∣ 𝜃2)

𝑓(𝑥 ∣ 𝜃1)
Our proof will proceed as follows:

1. We’ll show that if 𝑇 (𝑋) is sufficient, then 𝐿𝜃1,𝜃2
(𝑋) is a function of 𝑇 (𝑋) ∀ 𝜃1, 𝜃2.

2. We’ll show the converse: If 𝐿𝜃1,𝜃2
(𝑋) is a function of 𝑇 (𝑋) ∀ 𝜃1, 𝜃2, then 𝑇 (𝑋) is suffi-

cient. This combined with (1) will show that 𝐿𝜃1,𝜃2
(𝑋) is a minimal sufficient statistic.

3. We’ll use the above two statements to prove the theorem!

First, suppose that 𝑇 (𝑋) is sufficient for 𝜃. Then, by definition we can write

𝐿𝜃1,𝜃2
(𝑥) = 𝑓(𝑥 ∣ 𝜃2)

𝑓(𝑥 ∣ 𝜃1) = 𝑔(𝑇 (𝑥) ∣ 𝜃1)ℎ(𝑥)
𝑔(𝑇 (𝑥) ∣ 𝜃2)ℎ(𝑥) = 𝑔(𝑇 (𝑥) ∣ 𝜃1)

𝑔(𝑇 (𝑥) ∣ 𝜃2)
and so 𝐿𝜃1,𝜃2

(𝑋) is a function of 𝑇 (𝑥) ∀ 𝜃1, 𝜃2.

Second, assume WLOG that 𝜃1 is fixed, and denote our unknown parameter 𝜃2 = 𝜃. We can
rearrange our likelihood ratio as

𝐿𝜃1,𝜃(𝑥) = 𝑓(𝑥 ∣ 𝜃)
𝑓(𝑥 ∣ 𝜃1)

𝑓(𝑥 ∣ 𝜃) = 𝐿𝜃1,𝜃(𝑥)𝑓(𝑥 ∣ 𝜃1)

and note that 𝐿𝜃1,𝜃(𝑥) is a function of 𝑇 (𝑋) by assumption, and 𝑓(𝑥 ∣ 𝜃1) is a function of
𝑥 that does not depend on our unknown parameter 𝜃. Then 𝑇 (𝑋) satisfies the factorization
criterion, and is therefore sufficient.

Let 𝑇 ∗∗(𝑋) ≡ 𝐿𝜃1,𝜃2
(𝑋). Then the first two statements we have shown give us that

𝑇 (𝑋) is sufficient ⟺ 𝑇 ∗∗(𝑋) is a function of 𝑇 (𝑋)

and therefore 𝑇 ∗∗(𝑋) is a minimal sufficient statistic, by definition.

We’ll now (officially) prove our theorem. By hypothesis of the theorem,

48



𝑇 ∗(𝑥) = 𝑇 ∗(𝑦) ⟺ 𝑓(𝑦 ∣ 𝜃)
𝑓(𝑥 ∣ 𝜃) is 𝜃 − 𝑓𝑟𝑒𝑒

⟺ 𝑓(𝑦 ∣ 𝜃1)
𝑓(𝑥 ∣ 𝜃1) = 𝑓(𝑦 ∣ 𝜃2)

𝑓(𝑥 ∣ 𝜃2) ∀𝜃1, 𝜃2

⟺ 𝑓(𝑦 ∣ 𝜃2)
𝑓(𝑦 ∣ 𝜃1) = 𝑓(𝑥 ∣ 𝜃2)

𝑓(𝑥 ∣ 𝜃1) ∀𝜃1, 𝜃2

⟺ 𝐿𝜃1,𝜃2
(𝑦) = 𝐿𝜃1,𝜃2

(𝑥) ∀𝜃1, 𝜃2
⟺ 𝑇 ∗∗(𝑦) = 𝑇 ∗∗(𝑥)

Therefore 𝑇 ∗(𝑋) and 𝑇 ∗∗(𝑋) are equivalent. Since 𝑇 ∗∗(𝑋) is a minimal sufficient statistic,
𝑇 ∗(𝑋) is therefore also minimal sufficient.

Complete, Sufficient, Minimal

If 𝑇 (𝑋) is complete and sufficient, then 𝑇 (𝑋) is minimal sufficient.

Proof.

Just kidding! Prove it on your own and show it to me, if you want bonus points in my heart
:)

Rao-Blackwell-Lehmann-Scheffe (RBLS)

Let 𝑇 (𝑋) be a complete and sufficient statistic for unknown parameter 𝜃, and let 𝜏(𝜃) be some
function of 𝜃. If there exists at least one unbiased estimator ̃𝜏 (𝑋) for 𝜏(𝜃), then there exists
a unique UMVUE ̂𝜏 (𝑇 (𝑋)) for 𝜏(𝜃) given by

̂𝜏 (𝑇 (𝑋)) = 𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)]

Why do we care? An important consequence of the RBLS Theorem is that if 𝑇 (𝑋) is a complete
and sufficient statistic for 𝜃, then any function 𝜙(𝑇 (𝑋)) is the UMVUE of its expectation
𝐸[𝜙(𝑇 (𝑋))] (so long as the expectation is finite for all 𝜃). This Theorem is therefore a very
convenient way to find UMVUEs: (1) Find a complete and sufficient statistic for an unknown
parameter, and (2) functions of that statistic are then the UMVUE for their expectation!

Proof.

To prove RBLS, we first must prove an Improvement Lemma and a Uniqueness Lemma.

Improvement Lemma. Suppose that 𝑇 (𝑋) is a sufficient statistic for 𝜃. If ̃𝜏 (𝑋) is an unbiased
estimator of 𝜏(𝜃), then 𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)] does not depend on 𝜃 (by sufficiency) and is also an
estimator of 𝜏(𝜃), which (importantly) has smaller variance than ̃𝜏 (𝑋).
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Proof of Lemma. First, note that 𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)] is an unbiased estimator for 𝜏(𝜃), since

𝐸[𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)]] = 𝐸[ ̃𝜏(𝑋)] (Law of Iterated Expectation)
= 𝜏(𝜃) ( ̃𝜏(𝑋) is unbiased)

Then,

𝑉 𝑎𝑟( ̃𝜏(𝑋)) = 𝐸[𝑉 𝑎𝑟( ̃𝜏(𝑋) ∣ 𝑇 (𝑋))] + 𝑉 𝑎𝑟(𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)])
≥ 𝑉 𝑎𝑟(𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)])

and we’re done! 𝐸[ ̃𝜏(𝑋) ∣ 𝑇 (𝑋)] has a smaller variance than ̃𝜏 (𝑋). Since both are unbiased,
this is considered an “improvement” (hence the name of the Lemma).

Uniqueness Lemma. If 𝑇 (𝑋) is complete, then for some unknown parameter 𝜃 and function of
it 𝜏(𝜃), 𝜏(𝜃) has at most one unbiased estimator ̂𝜏 (𝑇 (𝑋)) that depends on 𝑇 (𝑋).
Proof of Lemma. Suppose, toward contradiction, that 𝜏(𝜃) has more than one unbiased esti-
mator that depends on 𝑇 (𝑋), given by ̃𝜏 (𝑇 (𝑋)) and ̂𝜏 (𝑇 (𝑋)), ̃𝜏 (𝑇 (𝑋)) ≠ ̂𝜏(𝑇 (𝑋)). Then

𝐸[ ̃𝜏(𝑇 (𝑋)) − ̂𝜏(𝑇 (𝑋))] = 𝜏(𝜃) − 𝜏(𝜃) = 0 ∀𝜃
Let 𝑔(𝑇 (𝑋)) = ̃𝜏(𝑇 (𝑋))− ̂𝜏(𝑇 (𝑋)). Since 𝑇 (𝑋) is complete, and 𝐸[𝑔(𝑇 (𝑋))] = 0, this implies
̃𝜏 (𝑇 (𝑋)) − ̂𝜏(𝑇 (𝑋)) = 0, which means ̃𝜏 (𝑇 (𝑋)) = ̂𝜏(𝑇 (𝑋)). Contradiction.

Back to the proof of RBLS.

We’ve shown previously that ̂𝜏 (𝑇 (𝑋)) is an unbiased estimator for 𝜏𝜃 (law of iterated expecta-
tion). Let 𝜏1(𝑋) be any other unbiased estimator for 𝜏(𝜃), and let 𝜏2(𝑇 (𝑋)) = 𝐸[𝜏1(𝑋) ∣ 𝑇 (𝑋)].
Then 𝜏2(𝑇 (𝑋)) is also unbiased for 𝜏(𝜃) (again, iterated expectation), and by the Uniqueness
Lemma (since 𝑇 is complete by supposition), ̂𝜏 (𝑇 (𝑋)) = 𝜏2(𝑇 (𝑋)). But,

𝑉 𝑎𝑟( ̂𝜏(𝑇 (𝑋))) = 𝑉 𝑎𝑟(𝜏2(𝑇 (𝑋))) ( ̂𝜏 = 𝜏2)
≤ 𝑉 𝑎𝑟(𝜏1(𝑇 (𝑋))) (Improvement Lemma)

so ̂𝜏 (𝑇 (𝑋)) is the UMVUE for 𝜏(𝜃), as desired.
Cramér-Rao Lower Bound

Let 𝑓𝑌 (𝑦 ∣ 𝜃) be a pdf with nice* conditions, and let 𝑌1, … , 𝑌𝑛 be a random sample from
𝑓𝑌 (𝑦 ∣ 𝜃). Let ̂𝜃 be any unbiased estimator of 𝜃. Then
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𝑉 𝑎𝑟( ̂𝜃) ≥ {𝐸 [(𝜕 log(𝐿(𝜃 ∣ 𝑦))
𝜕𝜃 )

2
]}

−1

= − {𝐸 [𝜕2 log(𝐿(𝜃 ∣ 𝑦))
𝜕𝜃2 ]}

−1

= 1
𝐼(𝜃)

*our nice conditions that we need are that 𝑓𝑌 (𝑦 ∣ 𝜃) has continuous first- and second-order
derivatives, which would quickly discover we need by looking at the form for the C-R lower
bound, and that the set of values 𝑦 where 𝑓𝑌 (𝑦 ∣ 𝜃) ≠ 0 does not depend on 𝜃. If you are
familiar with the concept of the “support” of a function, that is where this second condition
comes from. The key here is that this condition allows to interchange derivatives and integrals,
in particular, 𝜕

𝜕𝜃 ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝜕
𝜕𝜃𝑓(𝑥)𝑑𝑥, which we’ll need to complete the proof.

Proof.

Let 𝑋 = 𝜕 log 𝐿(𝜃∣y)
𝜕𝜃 . By the Covariance Inequality,

𝑉 𝑎𝑟( ̂𝜃) ≥ 𝐶𝑜𝑣( ̂𝜃, 𝑋)2

𝑉 𝑎𝑟(𝑋)

and so if we can show

𝐶𝑜𝑣( ̂𝜃, 𝑋)2

𝑉 𝑎𝑟(𝑋) = {𝐸 [(𝜕 log(𝐿(𝜃 ∣ y))
𝜕𝜃 )

2
]}

−1

= 1
𝐼(𝜃)

then we’re done, as this is the C-R lower bound. Note first that
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𝐸[𝑋] = ∫ 𝑥𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ (𝜕 log𝐿(𝜃 ∣ y)
𝜕𝜃 ) 𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ (𝜕 log 𝑓𝑌 (y ∣ 𝜃)
𝜕𝜃 ) 𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫
𝜕
𝜕𝜃𝑓𝑌 (y ∣ 𝜃)
𝑓𝑌 (y ∣ 𝜃) 𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ 𝜕
𝜕𝜃𝑓𝑌 (y ∣ 𝜃)𝑑y

= 𝜕
𝜕𝜃 ∫ 𝑓𝑌 (y ∣ 𝜃)𝑑y

= 𝜕
𝜕𝜃1

= 0

This means that

𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2
= 𝐸[𝑋2]

= 𝐸 [(𝜕 log𝐿(𝜃 ∣ y)
𝜕𝜃 )

2
]

and
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𝐶𝑜𝑣( ̂𝜃, 𝑋) = 𝐸[ ̂𝜃𝑋] − 𝐸[ ̂𝜃]𝐸[𝑋]
= 𝐸[ ̂𝜃𝑋]

= ∫ ̂𝜃𝑥𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ ̂𝜃 (𝜕 log𝐿(𝜃 ∣ y)
𝜕𝜃 ) 𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ ̂𝜃 (𝜕 log 𝑓𝑌 (y ∣ 𝜃)
𝜕𝜃 ) 𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ ̂𝜃
𝜕
𝜕𝜃𝑓𝑌 (y ∣ 𝜃)
𝑓𝑌 (y ∣ 𝜃) 𝑓𝑌 (y ∣ 𝜃)𝑑y

= ∫ ̂𝜃 𝜕
𝜕𝜃𝑓𝑌 (y ∣ 𝜃)𝑑y

= 𝜕
𝜕𝜃 ∫ ̂𝜃𝑓𝑌 (y ∣ 𝜃)𝑑y

= 𝜕
𝜕𝜃𝐸[ ̂𝜃]

= 𝜕
𝜕𝜃𝜃

= 1

where 𝐸[ ̂𝜃] = 𝜃 since our estimator is unbiased. Putting this all together, we have

𝑉 𝑎𝑟[ ̂𝜃] ≥ 𝐶𝑜𝑣( ̂𝜃, 𝑋)2

𝑉 𝑎𝑟(𝑋)

= 12

𝐸 [(𝜕 log 𝐿(𝜃∣y)
𝜕𝜃 )

2
]

= 1
𝐼(𝜃)

as desired.

Comment: Note that what the Cramér-Rao lower bound tells us is that, if the variance
of an unbiased estimator is equal to the Cramér-Rao lower bound, then that estimator has
the minimum possible variance among all unbiased estimators there could possibly be. This
allows us to prove, for example, whether or not an unbiased estimator is the UMVUE: If an
unbiased estimator’s variance achieves the C-R lower bound, then it is optimal according to
the UMVUE criterion.
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4.5 Worked Examples

Problem 1: Suppose 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/𝜃). Compute the MLE of 𝜃, and show

that it is an unbiased estimator of 𝜃.
Solution:

Note that we can write

𝐿(𝜃) =
𝑛

∏
𝑖=1

1
𝜃𝑒−𝑥𝑖/𝜃

log𝐿(𝜃) =
𝑛

∑
𝑖=1

log(1
𝜃𝑒−𝑥𝑖/𝜃)

=
𝑛

∑
𝑖=1

log(1
𝜃 ) −

𝑛
∑
𝑖=1

𝑥𝑖/𝜃

= −𝑛 log(𝜃) − 1
𝜃

𝑛
∑
𝑖=1

𝑥𝑖

𝜕
𝜕𝜃 log𝐿(𝜃) = 𝜕

𝜕𝜃 (−𝑛 log(𝜃) − 1
𝜃

𝑛
∑
𝑖=1

𝑥𝑖)

= −𝑛
𝜃 + ∑𝑛

𝑖=1 𝑥𝑖
𝜃2

Setting this equal to 0 and solving for 𝜃 we obtain

0 ≡ −𝑛
𝜃 + ∑𝑛

𝑖=1 𝑥𝑖
𝜃2

𝑛
𝜃 = ∑𝑛

𝑖=1 𝑥𝑖
𝜃2

𝑛 = ∑𝑛
𝑖=1 𝑥𝑖
𝜃

𝜃 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

and so the MLE for 𝜃 is the sample mean. To show that the MLE is unbiased, we note that
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𝐸 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋𝑖] = 1
𝑛

𝑛
∑
𝑖=1

𝜃 = 𝜃

as desired.

Problem 2: Suppose again that 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/𝜃). Let ̂𝜃2 = 𝑌1, and ̂𝜃3 =

𝑛𝑌(1). Show that ̂𝜃2 and ̂𝜃3 are unbiased estimators of 𝜃. Hint: use the fact that 𝑌(1) ∼
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑛/𝜃)
Solution:

Note that the mean of a random variable 𝑌 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆) is given by 1/𝜆. Then we can
write

𝐸[ ̂𝜃2] = 𝐸[𝑌1] = 1
1/𝜃 = 𝜃

and

𝐸[ ̂𝜃3] = 𝐸[𝑛𝑌(1)] = 𝑛
𝑛/𝜃 = 𝜃

as desired.

Problem 3: Compare the variance of the estimators from Problems 1 and 2. Which is most
efficient?

Solution:

Recall that the variance of a random variable 𝑌 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆) is given by 1/𝜆2. Let the
MLE from Problem 1 be denoted ̂𝜃1 = �̄�. Then we can write

𝑉 𝑎𝑟 [ ̂𝜃1] = 𝑉 𝑎𝑟 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑋𝑖] = 1
𝑛2 ( 𝑛

(1/𝜃)2 ) = 𝜃2

𝑛

and

𝑉 𝑎𝑟 [ ̂𝜃2] = 𝑉 𝑎𝑟[𝑌1] = 1
(1/𝜃)2 = 𝜃2

and

𝑉 𝑎𝑟 [ ̂𝜃3] = 𝑉 𝑎𝑟[𝑛𝑌(1)] = 𝑛2𝑉 𝑎𝑟[𝑌(1)] = 𝑛2

(𝑛/𝜃)2 = 𝜃2
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Thus, the variance of the MLE, ̂𝜃1, is most efficient, and is 𝑛 times smaller than the variance
of both ̂𝜃2 and ̂𝜃3.

Problem 4: Suppose 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝑁(𝜇, 𝜎2). Show that the estimator ̂𝜇 = 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖 and

the estimator ̂𝜇𝑤 = ∑𝑛
𝑖=1 𝑤𝑖𝑋𝑖 are both unbiased estimators of 𝜇, where ∑𝑛

𝑖=1 𝑤𝑖 = 1.
Solution:

We can write

𝐸[ ̂𝜇] = 𝐸 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋𝑖] = 1
𝑛

𝑛
∑
𝑖=1

𝜇 = 𝜇

and

𝐸[ ̂𝜇𝑤] = 𝐸 [
𝑛

∑
𝑖=1

𝑤𝑖𝑋𝑖] =
𝑛

∑
𝑖=1

𝑤𝑖𝐸 [𝑋𝑖] =
𝑛

∑
𝑖=1

𝑤𝑖𝜇 = 𝜇
𝑛

∑
𝑖=1

𝑤𝑖 = 𝜇

as desired.

Problem 5: Determine whether the estimator ̂𝜇 or ̂𝜇𝑤 is more efficient, in Problem 5, if we
additionally impose the constraint 𝑤𝑖 ≥ 0 ∀𝑖. (Note that this is a more “general” example
based on Example 5.4.5 in the course textbook) (Hint: use the Cauchy-Schwarz inequality)

Solution:

To determine relative efficiency, we must compute the variance of each estimator. We have

𝑉 𝑎𝑟[ ̂𝜇] = 𝑉 𝑎𝑟 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝜎2 = 𝜎2/𝑛

and
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𝑉 𝑎𝑟[ ̂𝜇𝑤] = 𝑉 𝑎𝑟 [
𝑛

∑
𝑖=1

𝑤𝑖𝑋𝑖]

=
𝑛

∑
𝑖=1

𝑉 𝑎𝑟[𝑤𝑖𝑋𝑖]

=
𝑛

∑
𝑖=1

𝑤2
𝑖 𝑉 𝑎𝑟[𝑋𝑖]

=
𝑛

∑
𝑖=1

𝑤2
𝑖 𝜎2

= 𝜎2
𝑛

∑
𝑖=1

𝑤2
𝑖

And so to determine which estimator is more efficient, we need to determine if 1
𝑛 is less than

∑𝑛
𝑖=1 𝑤2

𝑖 (or not). The Cauchy-Schwarz inequality tells us that

(
𝑛

∑
𝑖=1

𝑤𝑖 ⋅ 1)
2

≤ (
𝑛

∑
𝑖=1

𝑤2
𝑖 ) (

𝑛
∑
𝑖=1

12)

(
𝑛

∑
𝑖=1

𝑤𝑖)
2

≤ (
𝑛

∑
𝑖=1

𝑤2
𝑖 ) 𝑛

1 ≤ (
𝑛

∑
𝑖=1

𝑤2
𝑖 ) 𝑛

1
𝑛 ≤

𝑛
∑
𝑖=1

𝑤2
𝑖

and therefore, ̂𝜇 is more efficient than ̂𝜇𝑤.

Problem 6: Suppose 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝑁(𝜇, 𝜎2). Show that the MLE for 𝜎2 is biased, and suggest

a modified variance estimator for 𝜎2 that is unbiased. (Note that this is example 5.4.4 in our
course textbook)

Solution:

Recall that the MLE for 𝜎2 is given by 1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2. Then
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𝐸 [ 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�)2] = 1
𝑛

𝑛
∑
𝑖=1

𝐸 [(𝑋𝑖 − �̄�)2]

= 1
𝑛

𝑛
∑
𝑖=1

𝐸 [𝑋2
𝑖 − 2𝑋𝑖�̄� + �̄�2]

= 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋2
𝑖 ] − 2𝐸 [ 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖�̄�] + 𝐸[�̄�2]

= 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋2
𝑖 ] − 2𝐸 [�̄� 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖] + 𝐸[�̄�2]

= 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋2
𝑖 ] − 2𝐸 [�̄�2] + 𝐸[�̄�2]

= 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋2
𝑖 ] − 𝐸 [�̄�2]

Recall that since 𝑋𝑖
𝑖𝑖𝑑∼ 𝑁(𝜇, 𝜎2), �̄� ∼ 𝑁(𝜇, 𝜎2/𝑛), and that we can write 𝑉 𝑎𝑟[𝑌 ] + 𝐸[𝑌 ]2 =

𝐸[𝑌 2] (definition of variance). Then we can write

𝐸 [ 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�)2] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋2
𝑖 ] − 𝐸 [�̄�2]

= 1
𝑛

𝑛
∑
𝑖=1

(𝜎2 + 𝜇2) − (𝜎2

𝑛 + 𝜇2)

= 𝜎2 + 𝜇2 − 𝜎2

𝑛 − 𝜇2

= 𝜎2 − 𝜎2

𝑛
= 𝜎2 (1 − 1

𝑛)

= 𝜎2 (𝑛 − 1
𝑛 )

Therefore, since 𝐸[�̂�2
𝑀𝐿𝐸] ≠ 𝜎2, the MLE is unbiased. Note that

𝐸 [( 𝑛
𝑛 − 1) 1

𝑛
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2] = ( 𝑛
𝑛 − 1) (𝑛 − 1

𝑛 ) 𝜎2

= 𝜎2
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and so the estimator 1
𝑛−1 ∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2 is an unbiased estimator for 𝜎2. This estimator is
often called the “sample variance”, and is denoted by 𝑆2.

59



5 Consistency

The properties of estimators that we’ve covered thus far (with the exception of asymptotic
unbiasedness) have all been what are called finite sample properties. All we mean by this is
that our sample size (𝑛) is less than infinity (hence: finite). In practice of course, our sample
size will always be less than infinity; however, it is still nice to know what happens to our
estimators (in terms of bias, variance, etc.) as our sample size gets really really large. Much of
Frequentist statistics relies on asymptotic (read: infinite sample size) theory to quantify our
uncertainty via confidence intervals, for example.

Consistency is one such asymptotic property that we care about. As opposed to asymptotic
unbiasedness, consistency tells us something about the entire shape of a distribution, as op-
posed to just the center of our distribution. Prof. Brianna Heggeseth and Prof. Kelsey Grinde
have a great visual for this below:

Pr(|θ̂2 − θ| < ε) Pr(|θ̂n − θ| < ε)

θ − ε

θ

θ + ε

2 n
Sample size

P
ar

am
et

er
 v

al
ue

Sampling Distribution for θ̂ at Different Sample Sizes

The idea here is that as our sample size gets large (as we move to the right on the x-axis),
consistency tells us something about the entire distribution of our estimator being within some
boundary. Asymptotic unbiasedness, on the other hand, only tells us about whether the center
of our distribution (a single point!) lies where it “should” (at the truth).
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Why do we care about consistency? Because we care about uncertainty! It would be really
unfortunate if, in collecting more and more data, we didn’t get any more certain about the true
parameter we’re trying to estimate. Intuitively, we want to bemore confident (less uncertain) in
our estimators when we have larger sample sizes. This is exactly what consistency is concerned
with. How do we prove whether or not an estimator is consistent? (Typically) Chebyshev’s
Inequality, which we state and prove below.

5.1 Learning Objectives

By the end of this chapter, you should be able to…

• Distinguish between finite sample properties and asymptotic properties of estimators
• Prove (using Chebyshev’s inequality) whether or not an estimator is consistent

5.2 Concept Questions

1. What is the distinction between a fixed sample property and an asymptotic property of
an estimator?

2. Describe, in your own words, what it means for an estimator to be consistent.

3. How can we use Chebyshev’s inequality to show that an estimator is consistent?

4. Which of the estimation techniques we’ve seen so far yield consistent estimators?

5.3 Definitions

You are expected to know the following definitions:

Asymptotically Unbiased

An estimator ̂𝜃 = 𝑔(𝑋1, … , 𝑋𝑛) is an asymptotically unbiased estimator for 𝜃 if lim
𝑛→∞

𝐸[ ̂𝜃] = 𝜃.

Consistent

An estimator ̂𝜃𝑛 = ℎ(𝑋1, … , 𝑋𝑛) is consistent for 𝜃 if it converges in probability to 𝜃. That is,
for all 𝜖 > 0,

lim
𝑛→∞

Pr(| ̂𝜃𝑛 − 𝜃| < 𝜖) = 1
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Note that we write our estimator with a subscript 𝑛 here to clarify that our estimator depends
on our sample size. There is an alternative 𝜖 − 𝛿 definition of consistency in the textbook, but
we won’t focus on it for this course.

Weak Law of Large Numbers

For independent and identically distributed random variables 𝑋1, … , 𝑋𝑛 with finite expecta-
tion 𝜇 < ∞,

lim
𝑛→∞

Pr(|𝑋 − 𝜇| < 𝜖) = 1

Alternatively, we can write that as 𝑛 → ∞, 𝑋
𝑝

→ 𝜇, where “
𝑝

→” denotes convergence in
probability.

5.4 Theorems

Chebyshev’s Inequality

Let 𝑊 be a random variable with mean 𝜇 and variance 𝜎2. Then for any 𝜖 > 0,

Pr(|𝑊 − 𝜇| < 𝜖) ≥ 1 − 𝜎2

𝜖2 ,

or, equivalently,

Pr(|𝑊 − 𝜇| ≥ 𝜖) ≤ 𝜎2

𝜖2 .

Proof.

Let 𝜖 > 0. Then
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𝜎2 = Var(𝑊)

= ∫
∞

−∞
(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤

= ∫
𝜇−𝜖

−∞
(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤 + ∫

𝜇+𝜖

𝜇−𝜖
(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤 + ∫

∞

𝜇+𝜖
(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤

≥ ∫
𝜇−𝜖

−∞
(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤 + 0 + ∫

∞

𝜇+𝜖
(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤

= ∫
|𝑤−𝜇|≥𝜖

(𝑤 − 𝜇)2𝑓𝑊 (𝑤)𝑑𝑤

≥ ∫
|𝑤−𝜇|≥𝜖

𝜖2𝑓𝑊 (𝑤)𝑑𝑤

= 𝜖2 ∫
|𝑤−𝜇|≥𝜖

𝑓𝑊 (𝑤)𝑑𝑤

= 𝜖2𝑃 (|𝑊 − 𝜇| ≥ 𝜖)

and rearranging yields

𝜎2 ≥ 𝜖2𝑃(|𝑊 − 𝜇| ≥ 𝜖)

𝑃(|𝑊 − 𝜇| ≥ 𝜖) ≤ 𝜎2

𝜖2

as desired.

Corollary 1: If ̂𝜃𝑛 is an unbiased estimator for 𝜃 and lim
𝑛→∞

𝑉 𝑎𝑟( ̂𝜃𝑛) = 0, then ̂𝜃𝑛 is consistent
for 𝜃. (You’ll prove this corollary on a problem set!)

Corollary 2: If ̂𝜃𝑛 is an asymptotically unbiased estimator for 𝜃 and lim
𝑛→∞

𝑉 𝑎𝑟( ̂𝜃𝑛) = 0, then
̂𝜃𝑛 is consistent for 𝜃.

Note that the second corollary is a bit stronger than the first one, in that the first corollary
actually implies the second. If an estimator is unbiased, then it is certainly asymptotically
unbiased as well.
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5.5 Worked Examples

Problem 1: Suppose 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝑁(𝜇, 𝜎2). Show that the MLE for 𝜎2 is asymptotically

unbiased.

Solution:

The MLE for 𝜎2 is given by 1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2 (see the MLE section of the course notes, worked
example problem 2), and has expectation (𝑛−1

𝑛 ) 𝜎2 (see the Properties section of the course
notes, worked example problem 6). To show that this estimator is asymptotically unbiased,
note that we have

lim
𝑛→∞

𝐸[ ̂𝜎2𝑀𝐿𝐸] = lim
𝑛→∞

(𝑛 − 1
𝑛 ) 𝜎2

= (1) 𝜎2

= 𝜎2

and therefore, the MLE for 𝜎2 is asymptotically unbiased.

Problem 2: Suppose 𝑌1, … , 𝑌𝑛
𝑖𝑖𝑑∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜃), and recall that ̂𝜃𝑀𝐿𝐸 = 𝑌(𝑛) with 𝑓𝑌(𝑛)

(𝑦 ∣
𝜃) = 𝑛

𝜃𝑛 𝑦𝑛−1, 0 ≤ 𝑦 ≤ 𝜃. Prove that ̂𝜃𝑀𝐿𝐸 is a consistent estimator for 𝜃.
Solution:

To prove that ̂𝜃𝑀𝐿𝐸 is consistent, we must first show that ̂𝜃𝑀𝐿𝐸 is (either) unbiased or asymp-
totically unbiased, and then we must show that the variance of ̂𝜃𝑀𝐿𝐸 tends to zero as 𝑛 → ∞.
To begin, note that

𝐸 [ ̂𝜃𝑀𝐿𝐸] = ∫
𝜃

0
𝑦𝑓𝑌(𝑛)

(𝑦 ∣ 𝜃)𝑑𝑦

= ∫
𝜃

0
𝑦 ( 𝑛

𝜃𝑛 𝑦𝑛−1) 𝑑𝑦

= 𝑛
𝜃𝑛 ∫

𝜃

0
𝑦𝑛𝑑𝑦

= 𝑛
𝜃𝑛 ( 𝑦𝑛+1

𝑛 + 1∣
𝜃

0
)

= 𝑛
𝜃𝑛 ( 𝜃𝑛+1

𝑛 + 1)

= ( 𝑛
𝑛 + 1) 𝜃
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and so ̂𝜃𝑀𝐿𝐸 is biased. It is, however, asymptotically unbiased. Note that ( 𝑛
𝑛+1) 𝑛→∞→ 1, and

therefore 𝐸 [ ̂𝜃𝑀𝐿𝐸] 𝑛→∞→ 𝜃.

All that’s left is to show that 𝑉 𝑎𝑟 [ ̂𝜃𝑀𝐿𝐸] 𝑛→∞→ 0. We can write

𝐸 [𝑌 2
(𝑛)] = ∫

𝜃

0
𝑦2 𝑛𝑦𝑛−1

𝜃𝑛 𝑑𝑦

= 𝑛
𝜃𝑛 ∫

𝜃

0
𝑦𝑛+1𝑑𝑦

= 𝑛
𝜃𝑛 ( 𝑦𝑛+2

𝑛 + 2∣
𝜃

0
)

= 𝑛
𝜃𝑛 ( 𝜃𝑛+2

𝑛 + 2)

= ( 𝑛
𝑛 + 2) 𝜃2

and therefore

lim
𝑛→∞

𝑉 𝑎𝑟 [ ̂𝜃𝑀𝐿𝐸] = lim
𝑛→∞

[𝐸 [𝑌 2
(𝑛)] − 𝐸 [𝑌(𝑛)]

2]

= lim
𝑛→∞

[( 𝑛
𝑛 + 2) 𝜃2 − ( 𝑛

𝑛 + 1)
2

𝜃2]

= 𝜃2 lim
𝑛→∞

[( 𝑛
𝑛 + 2) − ( 𝑛

𝑛 + 1)
2
]

= 𝜃2 lim
𝑛→∞

[ 𝑛
𝑛 + 2 − 𝑛2

(𝑛 + 1)2 ]

= 𝜃2 lim
𝑛→∞

[𝑛(𝑛 + 1)2 − 𝑛2(𝑛 + 2)
(𝑛 + 2)(𝑛 + 1)2 ]

= 𝜃2 lim
𝑛→∞

[𝑛(𝑛2 + 2𝑛 + 1) − 𝑛3 − 2𝑛2

(𝑛 + 2)(𝑛2 + 2𝑛 + 1) ]

= 𝜃2 lim
𝑛→∞

[𝑛3 + 2𝑛2 + 𝑛 − 𝑛3 − 2𝑛2

𝑛3 + 2𝑛2 + 2𝑛2 + 5𝑛 + 2]

= 𝜃2 lim
𝑛→∞

[ 𝑛
𝑛3 + 4𝑛2 + 5𝑛 + 2]

= 0
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where the last term goes to zero because 𝑛
𝑛3 → 0 as 𝑛 → ∞. Therefore, ̂𝜃𝑀𝐿𝐸 is a consistent

estimator for 𝜃.
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6 Asymptotics & the Central Limit Theorem

Asymptotic unbiasedness and consistency allow us to assess the behavior of estimators when
sample sizes get large. Thus far, however, we’ve only discussed what happens to point estimates
as 𝑛 goes to infinity. Point estimates are great, but they don’t tell the whole story. In order to
truly quantify uncertainty (which is arguably one of the main goals of statistics, if not the main
goal), we need to be able to estimate a range of plausible values for our estimators: we need
to be able to construct confidence intervals. This is made possible primarily by asymptotic
normality, the Central Limit Theorem, and properties of the normal distribution.

Confidence Intervals

Confidence intervals are one of the most difficult concepts for a budding statistician to grasp,
because they don’t have the intuitive, probabilistic definition we often want them to have (aka
the probability that the truth lies within the interval). As with Frequentist statistics more
generally, the definition of a confidence interval relies on the concept of repeated sampling from
a population.

A confidence interval either contains the true parameter, or it does not. There is no probability
involved in that statement. Probability comes into play when considering that, under repeated
sampling, if we construct confidence intervals each time we take a new sample and construct
an estimator, a given percentage of those intervals will contain the true parameter. A visual
representation of the confidence interval construction process is given in Figure 5.3.2 in the
course textbook.

Confidence Intervals - The CLT

The primary way that we construct confidence intervals is by “rearranging” the CLT so that a
quantity’s asymptotic distribution does not depend on the data nor the parameter of interest.
This process is sometimes called establishing an approximate pivotal quantity.

As an example, consider an iid random sample 𝑋1, … , 𝑋𝑛 where 𝐸[𝑋𝑖] = 𝜇 and 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2,
where 𝜎2 is known. The CLT tells us that

√𝑛(�̄� − 𝜇) 𝑑→ 𝑁(0, 𝜎2).
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We can use this to construct a confidence interval for 𝜇. By Slutsky’s theorem we can write

�̄� − 𝜇
𝜎/√𝑛

𝑑→ 𝑁(0, 1).

and note now that we know the asymptotic distribution for the (pivotal) quantity on the left,
and can therefore use the quantiles of this distribution to construct confidence intervals. For
a standard normal distribution (as is the case here) we can note that 95% of the distribution
is contained within 1.96 standard deviations of the mean, and therefore

Pr(−1.96 ≤ �̄� − 𝜇
𝜎/√𝑛 ≤ 1.96) = 0.95

We can rearrange the probability statement on the left hand side to get

Pr (�̄� − 1.96𝜎/√𝑛 ≤ 𝜇 ≤ �̄� + 1.96𝜎/√𝑛) = 0.95

and therefore, our 95% confidence interval for 𝜇 is given by (�̄� − 1.96𝜎/√𝑛, �̄� + 1.96𝜎/√𝑛).

Confidence Intervals - “Exact”

A second way that we construct confidence intervals is through a concrete distributional
assumption, and known quantiles of those distributions. Note that the confidence interval
constructed above involves the Central Limit Theorem, and no finite sample distributional as-
sumption. All we assume are that the data are iid observations with finite means and variances.
The “distribution” only comes into play as our sample size gets large.

When sample sizes aren’t large, applying the CLT might not make a whole lot of sense. In
these scenarios, it can be useful to use an alternative confidence interval construction, aided by
assuming a specific distribution for our random variables. In some scenarios these assumptions
may make more sense than others: in short, we’re always making some sort of assumption,
regardless of what we do. It’s part of our job as statisticians to ensure that the assumptions
we make, make sense for the application we’re working with!

One example of a commonly used “exact” confidence interval is the Clopper-Pearson interval
for a binomial proportion. Consider an iid random sample 𝑋1, … , 𝑋𝑛, where ∑𝑛

𝑖=1 𝑋𝑖 ∼
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝). Intuitively, the interval is constructed by the following steps:

1. Find the largest p such that Pr(𝑋 ≤ 𝑘) ≥ 𝛼/2, where 𝑘 is the observed number of
successes. Call this largest value 𝑝𝑈 .

2. Find the smallest p such that Pr(𝑋 ≥ 𝑘) ≥ 𝛼/2, where 𝑘 is again the observed number
of successes. Call this smallest value 𝑝𝐿.
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3. Define the 100(1 − 𝛼)% confidence interval for 𝑝 to be (𝑝𝑈 , 𝑝𝐿).

This construction process allows us to determine all possible values of 𝑝 that are compatible
with our observed number of successes (which is exactly what a confidence interval should
do).

In more math-y terms, We can show that if ∑𝑛
𝑖=1 𝑋𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝), then Pr(∑𝑛

𝑖=1 𝑋𝑖 ≥
𝑥) = Pr(𝑌 ≤ 𝑝), where 𝑌 ∼ 𝐵𝑒𝑡𝑎(∑𝑛

𝑖=1 𝑥𝑖, 𝑛 − ∑𝑛
𝑖=1 𝑥𝑖 + 1). The point of doing this is that

we can rewrite our probability statements (involved in our confidence interval construction)
in terms of a random variable that does not depend on 𝑝. We can then compute the Clopper-
Pearson interval for 𝑝 as

Φ 𝛼
2 ;𝑥,𝑛−𝑥+1 < 𝑝 < Φ1− 𝛼

2 ;𝑥+1,𝑛−𝑥

where Φ𝑎;𝑣,𝑤 is the 𝑎th quantile from a Beta distribution with shape parameters 𝑣 and 𝑤. Al-
ternatively, you can even write the Clopper-Pearson in terms of quantiles of the 𝐹 -distribution,
but the Beta format is enough to emphasize the main point: If we can determine the distribu-
tion of some function of our data and unknown parameter, and manipulate that distribution
enough so that it depends on neither the data nor unknown parameter, we can use quantiles
and probability statements to construct confidence intervals.

Convergence

If an estimator ̂𝜃𝑛 is a consistent estimator for 𝜃, we also say that ̂𝜃𝑛 converges in probability
to 𝜃 (i.e., ̂𝜃𝑛

𝑝
→ 𝜃). There are three different types of convergence: almost sure conver-

gence, convergence in probability, and convergence in distribution (in order from “strongest”
to “weakest”). The main two that we’ll care about for this course are convergence in probabil-
ity and convergence in distribution. Mathematical details about convergence are for a more
advanced statistical theory course (or perhaps a more advanced course in analysis). For our
purposes, it will suffice to know that (1) convergence in probability implies convergence in
distribution, (2) the Central Limit Theorem, delta-method, and Slutsky’s Theorem are tools
we can use to determine (and manipulate) asymptotic distributions of random variables, and
(3) the Continuous Mapping Theorem (defined below).

Asymptotic Properties of MLEs

In addition to the nice intuition behind maximum likelihood estimation (finding the parame-
ters that make our data the most likely to have occurred), most* MLEs also have incredibly
convenient asymptotic properties, including:

• Asymptotic unbiasedness
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• Consistency

• Asymptotic normality

• Asymptotic efficiency

The definitions of the latter two properties are included below (and the former in the previous
chapters).

*the MLEs that do not have all of these properties are the ones that don’t have certain
“regularity conditions.” For the MLEs we consider in this class, these are the MLEs that
are on the boundary of the support of the pdf (such as the maximum or minimum order
statistic).

6.1 Learning Objectives

By the end of this chapter, you should be able to…

• Explain the usefulness of the Central Limit Theorem for Frequentist statistical theory

• Manipulate asymptotic distributions to remove their dependence on unknown parameters
using the delta-method and Slutsky’s theorem

– …and explain why such manipulation is important for confidence interval construc-
tion

• Derive confidence intervals for unknown parameters based on asymptotic or exact distri-
butions

6.2 Concept Questions

1. What feature of a confidence interval tells us about the precision of our estimator?

2. Why is “removing” unknown parameters from the asymptotic distribution of our estima-
tors important when constructing confidence intervals?
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6.3 Definitions

Asymptotic Normality

An estimator ̂𝜃𝑛 is asymptotically normal if ̂𝜃𝑛 converges in distribution to a normally dis-
tributed random variable.

Asymptotic Efficiency

An estimator ̂𝜃𝑛 is asymptotically efficient if it’s asymptotic variance attains the C-R Lower
Bound. Note that this is the C-R Lower Bound for a single observation, and therefore the
asymptotic distribution of an MLE looks something like this:

√𝑛( ̂𝜃𝑛 − 𝜃) 𝑑→ 𝑁 (0, 1
𝐼1(𝜃))

Confidence Interval

A 100(1 - 𝛼)% confidence interval for a parameter 𝜃 is given by (𝑎, 𝑏), where Pr(𝑎 ≤ 𝜃 ≤ 𝑏) =
1 − 𝛼.

6.4 Theorems

Central Limit Theorem (CLT)

For iid random variables 𝑋1, … , 𝑋𝑛 with mean 𝜇 and variance 𝜎2,

√𝑛( ̄𝑋𝑛 − 𝜇) 𝑑→ 𝑁(0, 𝜎2)

where “
𝑑→” denotes convergence in distribution.

Proof.

Note that this proof is not completely rigorous, in that we will use the following theorem
(without proof) in order to prove the CLT:

Theorem: Let 𝑊1, … , 𝑊𝑛 be a sequence of random variables with MGF of the sequence 𝑊𝑛
given by 𝑀𝑊𝑛

(𝑡). Also, let 𝑉 denote another random variable with MGF 𝑀𝑉 (𝑡). Then if
lim

𝑛→∞
𝑀𝑊𝑛

(𝑡) = 𝑀𝑉 (𝑡), for all values of 𝑡 in some interval around 𝑡 = 0, then the sequence
𝑊1, … , 𝑊𝑛 converges in distribution to 𝑉 .

Suppose 𝑋1, … , 𝑋𝑛 with mean 𝜇 and variance 𝜎2, and let 𝑌𝑖 = (𝑋𝑖 − 𝜇)/𝜎. Then 𝐸[𝑌𝑖] = 0,
and 𝑉 𝑎𝑟[𝑌𝑖] = 1 since
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𝐸[𝑌𝑖] = 𝐸 [(𝑋𝑖 − 𝜇)/𝜎] = 1
𝜎(𝐸[𝑋𝑖] − 𝜇) = 1

𝜎(𝜇 − 𝜇) = 0

and

𝑉 𝑎𝑟[𝑌𝑖] = 𝑉 𝑎𝑟 [(𝑋𝑖 − 𝜇)/𝜎] = 1
𝜎2 𝑉 𝑎𝑟[𝑋𝑖 − 𝜇] = 1

𝜎2 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2

𝜎2 = 1

Further, let

𝑍𝑛 =
√𝑛(�̄� − 𝜇)

𝜎 = 1√𝑛
𝑛

∑
𝑖=1

𝑌𝑖

where the last two terms are equal since

1√𝑛
𝑛

∑
𝑖=1

𝑌𝑖 = 1√𝑛
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝜇
𝜎 )

= 1
𝜎√𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇)

= 1
𝜎√𝑛(𝑛�̄� − 𝑛𝜇)

=
√𝑛(�̄� − 𝜇)

𝜎

We’ll show that 𝑍𝑛
𝑑→ 𝑁(0, 1) by showing that the MGF of 𝑍𝑛 converges to the MGF of

a standard normal distribution. Let 𝑀𝑌 (𝑡) denote the MGF of each 𝑌𝑖. Then the MGF of
∑𝑛

𝑖=1 𝑌𝑖 is given by

𝐸[𝑒𝑡 ∑𝑛
𝑖=1 𝑌𝑖 ] = 𝐸[𝑒𝑡𝑌1𝑒𝑡𝑌2 … 𝑒𝑡𝑌𝑛 ] = 𝐸[𝑒𝑡𝑌1 ]𝐸[𝑒𝑡𝑌2 ] … 𝐸[𝑒𝑡𝑌𝑛 ] = 𝑀𝑌 (𝑡)𝑛

and the MGF of 𝑍𝑛 is

𝑀𝑍𝑛
(𝑡) = 𝐸[𝑒𝑡𝑍𝑛 ] = 𝐸[𝑒𝑡 1√𝑛 ∑𝑛

𝑖=1 𝑌𝑖 ] = 𝑀𝑌 ( 𝑡√𝑛)
𝑛

Now note that the Taylor expansion of the function 𝑒𝑡𝑌 about 0 is given by

𝑒𝑡𝑌 = 1 + 𝑡𝑌 + 𝑡2𝑌 2

2! + 𝑡3𝑌 3

3! + …
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Taking the expectation of both sides, we obtain

𝐸[𝑒𝑡𝑌 ] = 1 + 𝑡𝐸[𝑌 ] + 𝑡2𝐸[𝑌 2]
2! + 𝑡3𝐸[𝑌 3]

3! + …

and note now that the left hand side is the MGF for 𝑌 . Recalling that 𝐸[𝑌 ] = 0 and
𝑉 𝑎𝑟[𝑌 ] = 1, we have

𝐸[𝑒𝑡𝑌 ] = 1 + 𝑡2

2! + 𝑡3𝐸[𝑌 3]
3! + …

And therefore

𝐸[𝑒𝑡𝑍𝑛 ] = [1 + 𝑡2

2𝑛 + 𝑡3𝐸[𝑌 3]
3!𝑛3/2 + … ]

𝑛

We’ll now make use of a theorem regarding sequences of real numbers (without proof): Let 𝑎𝑛
and 𝑐𝑛 be sequences of real numbers such that 𝑎𝑛

𝑛→∞→ 0 and 𝑐𝑛𝑎2
𝑛

𝑛→∞→ 0. Then if 𝑎𝑛𝑐𝑛
𝑛→∞→ 𝑏,

(1 + 𝑎𝑛)𝑐𝑛
𝑛→∞→ 𝑒𝑏.

Let 𝑎𝑛 = 𝑡2
2𝑛 + 𝑡3𝐸[𝑌 3]

3!𝑛3/2 + … and 𝑐𝑛 = 𝑛. Note that both 𝑎𝑛
𝑛→∞→ 0 and 𝑐𝑛𝑎2

𝑛
𝑛→∞→ 0. Then

lim
𝑛→∞

𝑎𝑛𝑐𝑛 = lim
𝑛→∞

[𝑡2

2 + 𝑡3𝐸[𝑌 3]
3!𝑛1/2 + … ] = 𝑡2

2

and therefore

𝑀𝑍𝑛
(𝑡) = (1 + 𝑎𝑛)𝑐𝑛

𝑛→∞→ 𝑒𝑡2/2

where we note that the right hand side is the MGF of a standard normal distribution. Then
finally, we have proved that

√𝑛(�̄� − 𝜇) 𝑑→ 𝑁(0, 𝜎2)

as desired.

Continuous Mapping Theorem

If 𝑋𝑛
𝑝

→ 𝑋, and 𝑔 is a continuous function, then 𝑔(𝑋𝑛)
𝑝

→ 𝑔(𝑋). Similarly for convergence
almost surely and convergence in distribution.

Proof. Left to the reader, but also on Wikipedia.
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Slutsky’s Theorem

If 𝑔(𝑋, 𝑌 ) is a jointly continuous function at every point (𝑋, 𝑎) for some fixed 𝑎, and if 𝑋𝑛
𝑑→ 𝑋

and 𝑌𝑛
𝑝

→ 𝑎, then 𝑔(𝑋𝑛, 𝑌𝑛) 𝑑→ 𝑔(𝑋, 𝑎).
Proof. Beyond the scope of the course, unfortunately, but here’s a link to the Wikipedia page
if you want to go down that rabbit hole in your spare time.

Delta-method

Let
√𝑛(𝑌 − 𝜇) 𝑑→ 𝑁(0, 𝜎2). If 𝑔(𝑌 ) is differentiable at 𝜇 and 𝑔′(𝜇) ≠ 0, then

√𝑛 (𝑔(𝑌 ) − 𝑔(𝜇)) 𝑑→ 𝑁(0, [𝑔′(𝜇)]2𝜎2)

Proof.

Since 𝑔 is differentiable at 𝜇, it’s first-order Taylor expansion is given by

𝑔(𝑌 ) = 𝑔(𝜇) + (𝑌 − 𝜇)𝑔′(𝜇) + 𝑂(|𝑌 − 𝜇|2)

where 𝑂(𝑓(𝑥)), referred to as “Big O,” describes the limiting behavior of the function 𝑓(𝑥). In
this case, we use it to note that every term in the Taylor expansion after the first derivative
evaluated at 𝜇 is growing no faster than |𝑌 − 𝜇|2 as 𝑛 → ∞.

Rearranging, note that

𝑔(𝑌 ) − 𝑔(𝜇) = (𝑌 − 𝜇)𝑔′(𝜇) + 𝑂(|𝑌 − 𝜇|2)

and so

√𝑛 (𝑔(𝑌 ) − 𝑔(𝜇)) = √𝑛(𝑌 − 𝜇)𝑔′(𝜇) + 𝑂(√𝑛|𝑌 − 𝜇|2)

Then note that
√𝑛(𝑌 −𝜇) 𝑑→ 𝑁(0, 𝜎2), 𝑔′(𝜇)

𝑝
→ 𝑔′(𝜇) since it’s just a constant, and 𝑂(√𝑛|𝑌 −

𝜇|2)
𝑝

→ 0 (due to the
√𝑛 term). Then using two applications of Slutsky’s theorem, we can

write that

√𝑛(𝑌 − 𝜇)𝑔′(𝜇) 𝑑→ 𝑁(0, 𝜎2)𝑔′(𝜇) = 𝑑→ 𝑁(0, [𝑔′(𝜇)]2𝜎2)
and
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√𝑛(𝑌 − 𝜇)𝑔′(𝜇) + 𝑂(√𝑛|𝑌 − 𝜇|2) 𝑑→ 𝑁(0, 𝜎2)𝑔′(𝜇) + 0
𝑑= 𝑁(0, [𝑔′(𝜇)]2𝜎2)

and so finally we have shown that

√𝑛 (𝑔(𝑌 ) − 𝑔(𝜇)) 𝑑→ 𝑁(0, [𝑔′(𝜇)]2𝜎2)

as desired.

6.5 Worked Examples

Problem 1: Suppose
√𝑛(𝑌𝑛 − 𝜇) 𝑑→ 𝑁(0, 𝜎2). Find the asymptotic distribution of

√𝑛(𝑌 2
𝑛 −

𝜇2) when 𝜇 ≠ 0.
Solution:

We can apply the delta-method with the function 𝑔(𝑥) = 𝑥2. Note that 𝑔′(𝑥) = 2𝑥, and
therefore we can write

√𝑛(𝑌𝑛 − 𝜇) 𝑑→ 𝑁(0, 𝜎2)
√𝑛(𝑔(𝑌𝑛) − 𝑔(𝜇)) 𝑑→ 𝑁(0, [𝑔′(𝜇)]2𝜎2)

√𝑛(𝑌 2
𝑛 − 𝜇2) 𝑑→ 𝑁(0, [2𝜇]2𝜎2)

√𝑛(𝑌 2
𝑛 − 𝜇2) 𝑑→ 𝑁(0, 4𝜇2𝜎2)

Problem 2: Suppose 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), and recall that the MLE for 𝑝 is given by

̂𝑝𝑀𝐿𝐸 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖. Find the asymptotic distribution of ̂𝑝𝑀𝐿𝐸 using the CLT and known
properties of the Bernoulli distribution (expectation and variance, for example), and construct
a 95% confidence interval for 𝑝 based on this asymptotic distribution.

Solution:

We know that 𝐸[𝑋𝑖] = 𝑝 and 𝑉 𝑎𝑟[𝑋𝑖] = 𝑝(1 − 𝑝). Then the CLT tell us that

√𝑛( ̂𝑝𝑀𝐿𝐸 − 𝑝) 𝑑→ 𝑁(0, 𝑝(1 − 𝑝))
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The WLLN gives us that ̂𝑝𝑀𝐿𝐸
𝑝

→ 𝑝, since ̂𝑝𝑀𝐿𝐸 is a sample mean. We can then use the
continuous mapping theorem to show that 1

√�̂�𝑀𝐿𝐸(1−�̂�𝑀𝐿𝐸)
𝑝

→ 1
√𝑝(1−𝑝) . Applying Slutsky’s

theorem, we then have

√𝑛 ( ̂𝑝𝑀𝐿𝐸 − 𝑝
√ ̂𝑝𝑀𝐿𝐸(1 − ̂𝑝𝑀𝐿𝐸)

) 𝑑→ 𝑁(0, 1)

and finally, (letting ̂𝑝 = ̂𝑝𝑀𝐿𝐸 for ease of notation)

0.95 = Pr(−1.96 < ̂𝑝 − 𝑝
√ ̂𝑝(1 − ̂𝑝)/𝑛

< 1.96)

= Pr (−1.96√ ̂𝑝(1 − ̂𝑝)/𝑛 < ̂𝑝 − 𝑝 < 1.96√ ̂𝑝(1 − ̂𝑝)/𝑛)
= Pr ( ̂𝑝 − 1.96√ ̂𝑝(1 − ̂𝑝)/𝑛 < 𝑝 < ̂𝑝 + 1.96√ ̂𝑝(1 − ̂𝑝)/𝑛)
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7 Hypothesis Testing

The goal of hypothesis testing is to make a decision between two conflicting theories, or “hy-
potheses.” The process of hypothesis testing involves the following steps:

1. State the hypotheses: 𝐻0 (null hypothesis) vs 𝐻1 (alternative hypothesis)

2. Investigate: are data compatible with 𝐻0? assuming 𝐻0 were true, are data extreme?

3. Make a decision: reject 𝐻0 or fail to reject 𝐻0

The first step is relatively straightforward. For the purposes of this course, our null hypothesis
will always be that some unknown parameter we are interested in (𝜃) is equal to a fixed point
(𝜃0). We’ll consider two possible alternatives hypothesis:

• 𝐻1 ∶ 𝜃 = 𝜃1 (“simple” alternative)

• 𝐻1 ∶ 𝜃 ≠ 𝜃0 (two-sided alternative)

The former is the simplest, non-trivial alternative hypothesis we can consider, and we can prove
some nice things in this setting (and hence build intuition for hypothesis testing broadly). The
latter is perhaps more relevant, particularly in linear regression.

If you recall from introductory statistics, the latter alternative provides the set-up we have
when testing if the linear relationship between a predictor 𝑋 and outcome 𝑌 are “statistically
significantly” associated; we test the null hypothesis 𝐻0 ∶ 𝛽1 = 0 against the alternative,
𝐻1 ∶ 𝛽1 ≠ 0, where 𝐸[𝑌 ∣ 𝑋] = 𝛽0 + 𝛽1𝑋. In this example, we’d have the unknown parameter
𝛽1, and the fixed point of our null hypothesis as 𝜃0 = 0.
The second step of hypothesis testing is the investigation. In determining whether the data
are compatible with the null hypothesis, we must first derive a test statistic. Test statistics are
typically functions of (1) our estimators and (2) the distribution of our estimator under the
null hypothesis. Intuitively, if we can determine the distribution of our estimator under the
null hypothesis, we can then observe whether or not the data we actually have is “extreme” or
not, given a certain threshold, 𝛼, for our hypothesis test. This threshold 𝛼 is directly related
to a 100(1 − 𝛼)% confidence interval, where anything observed outside the confidence interval
bounds is considered to lie in the “rejection region” (where you would thus reject the null
hypothesis).

There are three classical forms of test statistics that have varying finite-sample properties,
and can be shown to be asymptotically equivalent: the Wald test, the likelihood ratio test
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(LRT), and the score test (also sometimes called the Lagrange multiplier test). Each of these
is explained in further detail below.

Wald Tests

Suppose we are interested in testing the hypotheses 𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻1 ∶ 𝜃 ≠ 𝜃0. The Wald
test is the hypothesis test that uses the Wald test statistic 𝜆𝑊 , where

𝜆𝑊 = (
̂𝜃𝑀𝐿𝐸 − 𝜃0

𝑠𝑒( ̂𝜃𝑀𝐿𝐸)
)

2

.

Intuitively, the Wald test measures the difference between the estimated value for 𝜃 and the
null value for 𝜃, standardized by the variation of your estimator. If this reminds you (once
again) of a z-score, it should! In linear regression, with normally distributed standard errors,
it turns out that

√
𝑊 follows a 𝑡 distribution (we’ll show this on your problem set!).

Wald tests statistics are extremely straightforward to compute from the Central Limit Theorem.
The CLT states that, for iid 𝑋1, … , 𝑋𝑛 with expectation 𝜇 and variance 𝜎,

√𝑛(𝑋 − 𝜇) 𝑑→ 𝑁(0, 𝜎2).

Slutsky’s theorem allows us to write

(𝑋 − 𝜇
𝜎/√𝑛 ) 𝑑→ 𝑁(0, 1),

and note that the left-hand side is an estimator minus it’s expectation, divided by it’s standard
error. When 𝑋 is the MLE for 𝜇, this is the square root of the Wald test statistic! The final
thing to note is that the right-hand side tells us this quantity converges in distribution to
a standard normal distribution. Think about what we’ve previously shown about standard
normals “squared” to intuit the asymptotic distribution of a Wald test statistic: a 𝜒2

𝜈 random
variable, where the degrees of freedom 𝜈 in this case is one! For a single parameter restriction
(i.e. one hypothesis for one unknown parameter), the asymptotic distribution of a Wald test
statistic will always be 𝜒2

1.
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Wald Tests for Multiple Hypotheses

Note that there is also a multivariate version of the Wald test, used to jointly test multiple hy-
potheses on multiple parameters. In this case, we can write our null and alternative hypotheses
using matrices and vectors.

As a simple example, consider a linear regression model where we have a single, categorical
predictor with three categories. Our regression model looks something like this:

𝐸[𝑌 ∣ 𝑋] = 𝛽0 + 𝛽1𝑋𝐶𝑎𝑡2 + 𝛽2𝑋𝐶𝑎𝑡3

If we want to test if there is a significant association between 𝑌 and 𝑋, we can’t look at ̂𝛽1
and ̂𝛽2 separately. Rather, we need to test the joint null hypothesis 𝛽1 = 𝛽2 = 0, vs. the
alternative where at least one of our coefficients is not equal to zero. In introductory statistics,
we did this using the anova function in R. In matrix form, we can write our null and alternative
hypotheses as:

• 𝐻0 ∶ 𝑅𝛽 = r

• 𝐻1 ∶ 𝑅𝛽 ≠ r

where 𝑅 in this case is the identity matrix, 𝛽 = (𝛽0, 𝛽1)⊤, and r = (0, 0)⊤. The Wald test
statistic in this multi-hypothesis, multi-parameter case can then be written as

(𝑅 ̂𝜃 − r)⊤[𝑅( ̂𝑉 /𝑛)𝑅⊤]−1(𝑅 ̂𝜃 − r)

where ̂𝑉 is an estimator of the covariance matrix for ̂𝜃. We won’t focus on multi-hypothesis,
multi-parameter tests in this course, but I do want you to be able to draw connections between
statistical theory and things you learned way back in your introductory statistics course, hence
why this is included in the notes.

Likelihood Ratio Tests

Suppose we are interested in testing the hypotheses 𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻1 ∶ 𝜃 ≠ 𝜃0. The likelihood
ratio test is the hypothesis test that uses the likelihood ratio test statistic 𝜆𝐿𝑅𝑇 , where

𝜆𝐿𝑅𝑇 = −2 log⎛⎜⎜
⎝

sup
𝜃=𝜃0

𝐿(𝜃)

sup
𝜃∈Θ

𝐿(𝜃)
⎞⎟⎟
⎠

.

Since the ratio of the likelihoods is bounded between 0 and 1 (since the denominator will
always be at least as large as the numerator), the LRT statistic is always positive. When
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𝜆𝐿𝑅𝑇 is large, it suggests that the data are not compatible with 𝐻0, and values of 𝜆𝐿𝑅𝑇 close
to 0 suggest the data are compatible with 𝐻0. Therefore, we’ll reject 𝐻0 for large values of
𝜆𝐿𝑅𝑇 and fail to reject 𝐻0 if 𝜆𝐿𝑅𝑇 is small. The likelihood ratio test is the most “powerful”
of all level 𝛼 tests when we have a simple alternative hypothesis, and we can prove this using
the Neyman-Pearson Lemma. For the simple null hypothesis on a single parameter that we
consider, it can be shown that 𝜆𝐿𝑅𝑇

𝑑→ 𝜒2
1, just as with the Wald test statistic.

Score Tests

Suppose we are interested in testing the hypotheses 𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻1 ∶ 𝜃 ≠ 𝜃0. The score
test is the hypothesis test that uses the score test statistic 𝜆𝑆,

𝜆𝑆 =
( 𝜕

𝜕𝜃0
log𝐿(𝜃0 ∣ 𝑥))2

𝐼(𝜃0)

as its test statistic. Note that the score test statistic depends only on the distribution of the
estimator under the null hypothesis, rather than the maximum likelihood estimator. This is
sometimes referred to as a test that requires only computation of a restricted estimator (where
𝜃0 is “restricted” by the null distribution). The score test statistic is particularly useful when
the MLE is on the boundary of the parameter space (think: order statistics).

Intuitively, if 𝜃0 is near the estimator that maximizes the log likelihood function, the derivative
of the log likelihood function should be close to 0. The score statistic “standardizes” this
derivative by a measure of the variation of the estimator, contained in the information matrix.
Values of 𝜆𝑆 that are closer to zero are then more compatible with 𝐻0, since because it suggests
𝜃0 is close to the estimator that maximizes the log likelihood function. We’ll reject 𝐻0 for large
values of 𝜆𝑆. For the simple null hypothesis on a single parameter that we consider, it can be
shown that 𝜆𝑆

𝑑→ 𝜒2
1, just as with the Wald test statistic and LRT statistic.

7.1 Learning Objectives

By the end of this chapter, you should be able to…

• Derive and implement a hypothesis test using each of the three classical test statistics
to distinguish between two conflicting hypotheses

• Describe the differences and relationships between Type I Error, Type II Error, and
power, as well as the factors that influence each of them

• Calculate the power or Type II error for a given hypothesis test

80



7.2 Concept Questions

1. What is the goal of hypothesis testing?
2. What are the typical steps to deriving a hypothesis test?
3. What is the difference between a one-sided and a two-sided alternative hypothesis? How

does this impact our hypothesis testing procedure? How does this impact our p-value?
4. How are test statistics and p-values related?
5. How is type I error related to the choice of significance level?
6. What are the typical steps to calculating the probability of a type II error?
7. How is type II error related to the power of a hypothesis test?
8. What factors influence the power of a test? In practice, which of these factors can we

control?

7.3 Definitions

Wald Test Statistic

The Wald test statistic 𝜆𝑊 for testing the hypothesis 𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻1 ∶ 𝜃 ≠ 𝜃0 is given by

𝜆𝑊 = (
̂𝜃𝑀𝐿𝐸 − 𝜃0

𝑠𝑒( ̂𝜃𝑀𝐿𝐸)
)

2

,

where ̂𝜃𝑀𝐿𝐸 is a maximum likelihood estimator.

Likelihood Ratio Test (LRT) Statistic

The likelihood ratio test statistic 𝜆𝐿𝑅𝑇 for testing the hypothesis 𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻1 ∶ 𝜃 ≠ 𝜃0
is given by

𝜆𝐿𝑅𝑇 = −2 log⎛⎜⎜
⎝

sup
𝜃=𝜃0

𝐿(𝜃)

sup
𝜃∈Θ

𝐿(𝜃)
⎞⎟⎟
⎠

,

where we note that the denominator, sup
𝜃∈Θ

𝐿(𝜃), is the likelihood evaluated at the maximum

likelihood estimator.

Score Test Statistic

The score test statistic 𝜆𝑆 for testing the hypothesis 𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻1 ∶ 𝜃 ≠ 𝜃0 is given by

81



𝜆𝑆 =
( 𝜕

𝜕𝜃0
log𝐿(𝜃0 ∣ 𝑥))2

𝐼(𝜃0) .

Power

Power is the probability that we correctly reject the null hypothesis; aka, the probability that
we reject the null hypothesis, when the null hypothesis is actually false. As a conditional
probability statement: Pr(Reject 𝐻0 ∣ 𝐻0 False). Note that

Power = 1 − Type II Error

Type I Error (“False positive”)

Type I Error is the probability that the null hypothesis is rejected, when the null hypothesis
is actually true. As a conditional probability statement: Pr(Reject 𝐻0 ∣ 𝐻0 True)
Type II Error (“False negative”)

Type II Error is the probability that we fail to reject the null hypothesis, given that the null
hypothesis is actually false. As a conditional probability statement: Pr(Fail to reject 𝐻0 ∣
𝐻0 False)
Critical Region / Rejection Region

The critical/rejection region is defined as the set of values for which the null hypothesis would
be rejected. This set is often denoted with a capital 𝑅.

Critical Value

The critical value is the point that separates the rejection region from the “acceptance” region
(i.e., the value at which the decision for your hypothesis test would change). Acceptance is
in quotes because we should never “accept” the null hypothesis… but we still call the “fail-to-
reject” region the acceptance region for short.

Significance Level

The significance level, denoted 𝛼, is the probability that, under the null hypothesis, the test
statistic lies in the critical/rejection region.

P-value

The p-value associated with a test statistic is the probability of obtaining a value as or more
extreme than the observed test statistic, under the null hypothesis.

Uniformly Most Powerful (UMP) Test
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A “most powerful” test is a hypothesis test that has the greatest power among all possible
tests of a given significance threshold 𝛼. A uniformly most powerful (UMP) test is a test that
is most powerful for all possible values of parameters in the restricted parameter space, Θ0.

More formally, let the set 𝑅 denote the rejection region of a hypothesis test. Let

𝜙(𝑥) = {1 if 𝑥 ∈ 𝑅
0 if 𝑥 ∈ 𝑅𝑐

Then 𝜙(𝑥) is an indicator function. Recalling that expectations of indicator functions are
probabilities, note that 𝐸[𝜙(𝑥)] = Pr(Reject 𝐻0). 𝜙(𝑥) then represents our hypothesis test. A
hypothesis test 𝜙(𝑥) is UMP of size 𝛼 if, for any other hypothesis test 𝜙′(𝑥) of size (at most)
𝛼,

sup
𝜃∈Θ0

𝐸[𝜙′(𝑋) ∣ 𝜃] ≤ sup
𝜃∈Θ0

𝐸[𝜙(𝑋) ∣ 𝜃]

we have that ∀𝜃 ∈ Θ1,

𝐸[𝜙′(𝑋) ∣ 𝜃] ≤ 𝐸[𝜙(𝑋) ∣ 𝜃],

where Θ0 is the set of all values for 𝜃 that align with the null hypothesis (sometimes just a
single point, sometimes a region), and Θ1 is the set of all values for 𝜃 that align with the
alternative hypothesis (sometimes just a single point, sometimes a region). Note: In general,
UMP tests do not exist for two-sided alternative hypotheses. The Neyman-Pearson lemma
tells us about UMP tests for simple null and alternative hypotheses, and the Karlin-Rubin
theorem extends this to one-sided null and alternative hypotheses.

7.4 Theorems

Neyman-Pearson Lemma

Consider a hypothesis test with 𝐻0 ∶ 𝜃 = 𝜃0 and 𝐻1 ∶ 𝜃 = 𝜃1. Let 𝜙 be a likelihood ratio test of
level 𝛼, where 𝛼 = 𝐸[𝜙(𝑋) ∣ 𝜃0]. Then 𝜙 is a UMP level 𝛼 test for thee hypotheses 𝐻0 ∶ 𝜃 = 𝜃0
and 𝐻1 ∶ 𝜃 = 𝜃1.

Proof.

Let 𝛼 = 𝐸[𝜙(𝑋) ∣ 𝜃0]. Note that the LRT statistic is simplified in the case of these simple
hypotheses, and can be written just as 𝑓(𝑥∣𝜃1)

𝑓(𝑥∣𝜃0) .* If the likelihood under the alternative is greater
than some constant 𝑐 (which depends on 𝛼), then we reject the null in favor of the alternative,
and vice versa. Then the hypothesis testing function 𝜙 can be written as
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𝜙(𝑥) =
⎧{
⎨{⎩

0 if 𝜆𝐿𝑅𝑇 = 𝑓(𝑥∣𝜃1)
𝑓(𝑥∣𝜃0) < 𝑐

1 if 𝜆𝐿𝑅𝑇 = 𝑓(𝑥∣𝜃1)
𝑓(𝑥∣𝜃0) > 𝑐

Flip a coin if 𝜆𝐿𝑅𝑇 = 𝑓(𝑥∣𝜃1)
𝑓(𝑥∣𝜃0) = 𝑐

Suppose 𝜙′ is any other test such that 𝐸[𝜙′(𝑋) ∣ 𝜃0] ≤ 𝛼 (another level 𝛼 test). Then we must
show that 𝐸[𝜙′(𝑋) ∣ 𝜃1] ≤ 𝐸[𝜙(𝑋) ∣ 𝜃1].
By assumption, we have

𝐸[𝜙(𝑋) ∣ 𝜃0] = ∫ 𝜙(𝑥)𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥 = 𝛼

𝐸[𝜙′(𝑋) ∣ 𝜃0] = ∫ 𝜙′(𝑥)𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥 ≤ 𝛼

Therefore we can write

𝐸[𝜙(𝑋) ∣ 𝜃1] − 𝐸[𝜙′(𝑋) ∣ 𝜃1]

= ∫ 𝜙(𝑥)𝑓𝑋(𝑥 ∣ 𝜃1)𝑑𝑥 − ∫ 𝜙′(𝑥)𝑓𝑋(𝑥 ∣ 𝜃1)𝑑𝑥

= ∫[𝜙(𝑥) − 𝜙′(𝑥)]𝑓𝑋(𝑥 ∣ 𝜃1)𝑑𝑥

= ∫
{ 𝑓(𝑥∣𝜃1)

𝑓(𝑥∣𝜃0) >𝑐}
[𝜙(𝑥) − 𝜙′(𝑥)]⏟⏟⏟⏟⏟⏟⏟

≥0
𝑓𝑋(𝑥 ∣ 𝜃1)𝑑𝑥 + ∫

{ 𝑓(𝑥∣𝜃1)
𝑓(𝑥∣𝜃0) <𝑐}

[𝜙(𝑥) − 𝜙′(𝑥)]⏟⏟⏟⏟⏟⏟⏟
≤0

𝑓𝑋(𝑥 ∣ 𝜃1)𝑑𝑥 + ∫
{ 𝑓(𝑥∣𝜃1)

𝑓(𝑥∣𝜃0) =𝑐}
[𝜙(𝑥) − 𝜙′(𝑥)]𝑓𝑋(𝑥 ∣ 𝜃1)𝑑𝑥

≥ ∫
{ 𝑓(𝑥∣𝜃1)

𝑓(𝑥∣𝜃0) >𝑐}
[𝜙(𝑥) − 𝜙′(𝑥)]𝑐𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥 + ∫

{ 𝑓(𝑥∣𝜃1)
𝑓(𝑥∣𝜃0) <𝑐}

[𝜙(𝑥) − 𝜙′(𝑥)]𝑐𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥 + ∫
{ 𝑓(𝑥∣𝜃1)

𝑓(𝑥∣𝜃0) =𝑐}
[𝜙(𝑥) − 𝜙′(𝑥)]𝑐𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥

= 𝑐 ∫[𝜙(𝑥) − 𝜙′(𝑥)]𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥

= 𝑐 ∫ 𝜙(𝑥)𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥 − 𝑐 ∫ 𝜙′(𝑥)𝑓𝑋(𝑥 ∣ 𝜃0)𝑑𝑥

≥ 𝑐(𝛼 − 𝛼)
= 0

And rearranging yields

𝐸[𝜙(𝑋) ∣ 𝜃1] − 𝐸[𝜙′(𝑋) ∣ 𝜃1] ≥ 0
𝐸[𝜙(𝑋) ∣ 𝜃1] ≥ 𝐸[𝜙′(𝑋) ∣ 𝜃1]
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as desired.

*Note: The −2 log(… ) piece comes into play for the LRT statistic to ensure that the test
statistic converges in distribution to a 𝜒2 random variable. When we’re just comparing the
LRT statistic to another LRT test statistic, we can (more simply) just compare the ratio of
likelihoods. Think: comparing 𝑋 vs. 𝑌 is equivalent to comparing log(𝑋) vs. log(𝑌 ) if we
are only interested in the direction of the difference between them, since log is a monotone
function.

7.5 Worked Examples

Problem 1: Let 𝑌𝑖
𝑖𝑖𝑑∼ 𝑁(𝜇, 𝜎2), where 𝜎2 = 25 is known. Suppose we want to test the

hypotheses 𝐻0 ∶ 𝜇 = 8 vs. 𝐻1 ∶ 𝜇 ≠ 8 and we observe 𝑌 = 10 across 𝑛 = 64 observations. Can
we reject 𝐻0, with a significance threshold of 𝛼 = 0.05? (Use a Wald test statistic)

Solution:

Our hypotheses are already stated in the problem set-up. The next thing we should do is
derive a Wald test statistic. We know that the MLE for 𝜇 is given by ̂𝜇𝑀𝐿𝐸 = 𝑌 (we have
shown this is previous problem sets/worked examples). Then the Wald test statistic can be
written as

𝜆𝑊 = ( ̂𝜇𝑀𝐿𝐸 − 𝜇0
𝜎/√𝑛 )

2
= ( 10 − 8

5/
√

64)
2

= 10.24

We can compare this test statistic to the critical value from a 𝜒2
1 distribution since, by prop-

erties of normal distributions and recalling that standard normal distributions squared are
𝜒2

1,

𝑌 ∼ 𝑁(𝜇, 𝜎2/𝑛)
𝑌 − 𝜇
𝜎/√𝑛 ∼ 𝑁(0, 1)

(𝑌 − 𝜇
𝜎/√𝑛 )

2
∼ 𝜒2

1

To calculate the critical value when 𝛼 = 0.05, we turn to R.
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# The quantile function for a given distribution gives us the value at which
# a given percentage of the distributions lies ahead of that value, which
# is exactly what we want in this case!

qchisq(1 - 0.05, df = 1)

[1] 3.841459

Finally, noting that our test statistic is greater than the critical value, we reject 𝐻0.

Problem 2: Suppose we wanted to use a different significance level 𝛼. How would the
procedure in Problem 1 change if we let 𝛼 = 0.001? How would the procedure in Problem 1
change if we let 𝛼 = 0.1?
Solution:

Changing the significance level changes the critical value, and may change whether or not we
reject 𝐻0, depending on the difference between our critical value and the test statistic. We
can calculate what the critical value would be if we let 𝛼 = 0.01 and 𝛼 = 0.1 again in R:

# alpha = 0.01
qchisq(1 - 0.001, df = 1)

[1] 10.82757

# alpha = 0.1
qchisq(1 - 0.1, df = 1)

[1] 2.705543

Note that when 𝛼 = 0.1, we still reject 𝐻0. This should make intuitive sense, since increasing
𝛼 only can only increase our rejection region. However, when 𝛼 = 0.001, we would fail to
reject 𝐻0, as our test statistic is not “more extreme” (greater) than the critical value.

Problem 3: Suppose we have a random sample 𝑋1, … , 𝑋𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), and we want to
test the hypotheses 𝐻0 ∶ 𝑝 = 0.5, 𝐻1 ∶ 𝑝 ≠ 0.5. Suppose we calculate an estimator for 𝑝 as
̂𝑝 = 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖. Derive a Wald test statistic for this hypothesis testing scenario (simplifying

as much as you can).

Solution:

Recall that ̂𝑝 as defined in the problem set-up is the MLE for 𝑝. Then the Wald test statistic
can be written as
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𝜆𝑊 = ( ̂𝑝 − 𝑝0
𝑠𝑒( ̂𝑝) )

2
.

We can simplify a little further by calculating 𝑠𝑒( ̂𝑝) and plugging in 𝑝0. Recall from the CLT
(and Slutsky) that we have

( ̂𝑝 − 𝑝0
√ ̂𝑝(1 − ̂𝑝)/𝑛

) 𝑑→ 𝑁(0, 1)

Then the standard error of ̂𝑝 is given by √ ̂𝑝(1 − ̂𝑝)/𝑛, and our Walt test statistic simplifies
to

𝜆𝑊 = ( ̂𝑝 − 0.5
√ ̂𝑝(1 − ̂𝑝)/𝑛

)
2

.

(Note that this is as “simplified” as we can get without knowing ̂𝑝 or 𝑛)
Problem 4: Derive a LRT statistic for the hypothesis testing scenario described in Problem
3 (simplifying as much as you can).

Solution:

The LRT statistic is given by

𝜆𝐿𝑅𝑇 = −2 log⎛⎜⎜
⎝

sup
𝑝=𝑝0

𝐿(𝑝)

sup
𝑝∈Θ

𝐿(𝑝)
⎞⎟⎟
⎠

= −2 log( 𝐿(0.5)
𝐿( ̂𝑝𝑀𝐿𝐸))

The likelihood for our observations can be written as

𝐿(𝑝) =
𝑛

∏
𝑖=1

𝑝𝑥𝑖(1 − 𝑝)(1−𝑥𝑖)

And so our LRT statistic simplifies to
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𝜆𝐿𝑅𝑇 = −2 log(𝐿(0.5)
𝐿( ̂𝑝) )

= −2 [log𝐿(0.5) − log𝐿( ̂𝑝)]

= −2 [log(0.5)
𝑛

∑
𝑖=1

𝑋𝑖 + log(1 − 0.5)
𝑛

∑
𝑖=1

(1 − 𝑋𝑖) − log( ̂𝑝)
𝑛

∑
𝑖=1

𝑋𝑖 − log(1 − ̂𝑝)
𝑛

∑
𝑖=1

(1 − 𝑋𝑖)]

= −2 [log(0.5) (
𝑛

∑
𝑖=1

𝑋𝑖 +
𝑛

∑
𝑖=1

(1 − 𝑋𝑖)) − log( ̂𝑝)
𝑛

∑
𝑖=1

𝑋𝑖 − log(1 − ̂𝑝)
𝑛

∑
𝑖=1

(1 − 𝑋𝑖)]

= −2 [𝑛 log(0.5) − log( ̂𝑝)
𝑛

∑
𝑖=1

𝑋𝑖 − log(1 − ̂𝑝)
𝑛

∑
𝑖=1

(1 − 𝑋𝑖)]

= −2 [𝑛 log(0.5) − log( ̂𝑝)𝑛𝑋 − log(1 − ̂𝑝)(𝑛 − 𝑛𝑋)]
= −2𝑛 [log(0.5) − log( ̂𝑝) ̂𝑝 − log(1 − ̂𝑝)(1 − ̂𝑝)]

(Note that this is as “simplified” as we can get without knowing ̂𝑝 or 𝑛)
Problem 5: Derive a score test statistic for the hypothesis testing scenario described in
Problem 3 (simplifying as much as you can).

Solution:

The score test statistic is given by

𝜆𝑆 =
( 𝜕

𝜕𝑝0
log𝐿(𝑝0 ∣ 𝑥))2

𝐼(𝑝0) .

We can simplify by deriving the score and information matrix, and then plugging in 𝑝0 = 0.5.
We have,

𝜕
𝜕𝑝0

log𝐿(𝑝0 ∣ 𝑥) = 𝜕
𝜕𝑝0

[log(𝑝0)
𝑛

∑
𝑖=1

𝑋𝑖 + log(1 − 𝑝0)
𝑛

∑
𝑖=1

(1 − 𝑋𝑖)]

= ∑𝑛
𝑖=1 𝑋𝑖
𝑝0

− 𝑛 − ∑𝑛
𝑖=1 𝑋𝑖

1 − 𝑝0

( 𝜕
𝜕𝑝0

log𝐿(𝑝0 ∣ 𝑥))
2

= (∑𝑛
𝑖=1 𝑋𝑖
𝑝0

− 𝑛 − ∑𝑛
𝑖=1 𝑋𝑖

1 − 𝑝0
)

2

and plugging in 𝑝0 = 0.5, we have,
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( 𝜕
𝜕𝑝0

log𝐿(𝑝0 ∣ 𝑥))
2

= (∑𝑛
𝑖=1 𝑋𝑖
0.5 − 𝑛 − ∑𝑛

𝑖=1 𝑋𝑖
1 − 0.5 )

2

= (−𝑛 + 2 ∑𝑛
𝑖=1 𝑋𝑖

0.5 )
2

= (−2𝑛 + 4
𝑛

∑
𝑖=1

𝑋𝑖)
2

.

The information matrix is given by −𝐸 [ 𝜕2

𝜕𝑝2
0
log𝐿(𝑝0 ∣ 𝑥)]. Piecing this together,

𝜕2

𝜕𝑝2
0
log𝐿(𝑝0 ∣ 𝑥) = 𝜕

𝜕𝑝0
[∑𝑛

𝑖=1 𝑋𝑖
𝑝0

− 𝑛 − ∑𝑛
𝑖=1 𝑋𝑖

1 − 𝑝0
]

= − ∑𝑛
𝑖=1 𝑋𝑖
𝑝2

0
− 𝑛 − ∑𝑛

𝑖=1 𝑋𝑖
(1 − 𝑝0)2

And to get 𝐼(𝑝0), we take the negative expectation of the above quantity under the null
hypothesis (that is, where 𝐸[𝑋] = 𝑝0) to obtain

𝐼(𝑝0) = −𝐸 [− ∑𝑛
𝑖=1 𝑋𝑖
𝑝2

0
− 𝑛 − ∑𝑛

𝑖=1 𝑋𝑖
(1 − 𝑝0)2 ]

= 1
𝑝2

0

𝑛
∑
𝑖=1

𝐸[𝑋𝑖] + 1
(1 − 𝑝0)2 (𝑛 −

𝑛
∑
𝑖=1

𝐸[𝑋𝑖])

= 1
𝑝2

0

𝑛
∑
𝑖=1

𝑝0 + 1
(1 − 𝑝0)2 (𝑛 −

𝑛
∑
𝑖=1

𝑝0)

= 𝑛
𝑝0

+ 𝑛
(1 − 𝑝0)2 (1 − 𝑝0)

= 𝑛
𝑝0

+ 𝑛
(1 − 𝑝0)

And plugging in 𝑝0 = 0.5 we have

𝐼(0.5) = 𝑛
0.5 + 𝑛

(1 − 0.5) = 2𝑛 + 2𝑛 = 4𝑛.

Then, finally, the score test statistic (simplified as much as possible) is given by
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𝜆𝑆 =
( 𝜕

𝜕𝑝0
log𝐿(𝑝0 ∣ 𝑥))2

𝐼(𝑝0)

= (−2𝑛 + 4 ∑𝑛
𝑖=1 𝑋𝑖)

2

4𝑛

= (−2𝑛 + 4𝑛 ̂𝑝)2

4𝑛

= 4𝑛2 (−1 + 2 ̂𝑝)2

4𝑛
= 𝑛 (−1 + 2 ̂𝑝)2

Problem 6: For each of Problems 3, 4, and 5, calculate the p-values from each test when
̂𝑝 = 0.4 and 𝑛 = 300.

Solution:

We’ll again use R to obtain the critical values for these hypothesis tests, noting that in each
case, the test statistic follows a 𝜒2

1 distribution asymptotically:

p_hat <- 0.4
n <- 300

# Wald test statistic
lambda_w <- ((p_hat - 0.5)/(sqrt(p_hat * (1 - p_hat) / n)))^2

# LRT statistic
lambda_lrt <- -2 * n * (log(0.5) - log(p_hat) * p_hat - log(1 - p_hat) * (1 - p_hat))

# Score test statistic
lambda_s <- n * (-1 + 2 * p_hat)^2

# Compare statistics
lambda_w

[1] 12.5

lambda_lrt

[1] 12.08131
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lambda_s

[1] 12

# Calculate p-values
# Recall: probability that we observe something *as or more extreme*
1 - pchisq(lambda_w, df = 1)

[1] 0.000406952

1 - pchisq(lambda_lrt, df = 1)

[1] 0.0005092985

1 - pchisq(lambda_s, df = 1)

[1] 0.0005320055

Things to note:

• When 𝑛 is large (300, in this case), each of the three classical test statistics are approxi-
mately equal! This makes sense, as they all converge in distribution to the same random
variable, asymptotically.

• P-values are the probability that we would observe something as or more extreme than
what we actually did observe, under the null hypothesis. In R, we can use the p function
(for a given pdf) to calculate this.

Problem 7: Repeat Problem 6 but with ̂𝑝 = 0.4 and 𝑛 = 95. If your significance threshold
were 𝛼 = 0.05, would your conclusion to the hypothesis test be the same regardless of which
test statistic you chose?

Solution:

To answer this question, we can again calculate p-values, and compare them to 0.05 (note that
we could have also calculated a critical value, and compared our test statistics to the critical
value, as these are equivalent).
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p_hat <- 0.4
n <- 95

# Wald test statistic
lambda_w <- ((p_hat - 0.5)/(sqrt(p_hat * (1 - p_hat) / n)))^2

# LRT statistic
lambda_lrt <- -2 * n * (log(0.5) - log(p_hat) * p_hat - log(1 - p_hat) * (1 - p_hat))

# Score test statistic
lambda_s <- n * (-1 + 2 * p_hat)^2

# Compare statistics
lambda_w

[1] 3.958333

lambda_lrt

[1] 3.825748

lambda_s

[1] 3.8

# Calculate p-values
# Recall: probability that we observe something *as or more extreme*
1 - pchisq(lambda_w, df = 1)

[1] 0.04663986

1 - pchisq(lambda_lrt, df = 1)

[1] 0.05047083

1 - pchisq(lambda_s, df = 1)

[1] 0.05125258
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In this case, we would reject 𝐻0 using the Wald test statistic, but fail to reject using the
LRT statistic and score test statistic, since the only p-value that was below our significance
threshold was the one calculated from the Wald test statistic. Finite-sample distributions of
the three classical test statistics are generally unknown; only asymptotically have they been
shown to be equivalent, and therefore, can provide different answers to hypothesis tests when
sample sizes are relatively small.
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8 Bayesian Statistics

Everything that we have covered so far in this course (and likely what you have covered in
your entire statistics education thus far) has been from a Frequentist perspective. Frequentist
statistics relies on the underlying belief that, in reality, there is some fixed, unknown truth
(parameter) that we attempt to estimate by sampling from a population, computing an esti-
mate, and quantifying our uncertainty. Uncertainty quantification typically takes the form of
a confidence interval, and relies on the idea of repeated sampling from a population. The term
“Frequentist” comes from the idea of a probability being related to the “frequency” at which
an event occurs.

Bayesian statistics is named for Thomas Bayes, who coined Bayes’ Theorem in 1763. At
around a similar time, Pierre-Simon Laplace worked on very similar ideas, though all credit
to Bayesian statistics is typically given to Thomas Bayes. While Bayes’ Theorem itself is
not inherently Bayesian (it is quite literally just a probability rule), it provides us with a
mathematical foundation for Bayesian philosophy.

Philosophy

While Frequentists treat parameters as unknown, fixed constants, Bayesians instead treat
parameters as random variables, such that parameters follow probability distributions. This
distinction may seem subtle, but has large consequences on the interpretation of uncertainty in
each paradigm, as well as the properties of Frequentist and Bayesian estimators (particularly
in finite samples).

Rather than think of probability as being related to the frequency at which events occur,
Bayesians instead think of probabilities in the more colloquial way: the plausibility that an
event were to occur. In order to calculate the latter, we incorporate prior information or beliefs
about the event and the data we observe to update our beliefs.

Note that this is inherently subjective, as prior information / beliefs are involved in our esti-
mation framework. This subjectivity is one of the main reasons why Bayesian statistics was
historically rejected and frowned upon in the statistics community, in addition to computa-
tional challenges that have really only been alleviated with computational advances made in
the last 50 or so years. From a purely philosophical standpoint, Frequentist and Bayesian infer-
ence provide an interesting case study of the Enlightenment period, and modern thinking more
broadly, compared with post-modern thinking. Back in the day, Frequentists and Bayesians
were distinct. Nowadays, most reasonable statisticians will agree that both Frequentist and
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Bayesian methods have a place in statistics, are subjective in their own ways, and are both
useful in different circumstances.

Prior and Posterior Distributions

Suppose we collect data X (a random vector), and are interested in estimating some parameter
𝜃. If we treat 𝜃 as a random variable, like Bayesians do, Bayes’ theorem (again, really more of
a probability rule than a theorem) states that,

𝜋(𝜃 ∣ X) = 𝜋(X ∣ 𝜃)𝜋(𝜃)
𝜋(X) .

Themarginal distribution 𝜋(𝜃) is called the prior distribution for our parameter, and represents
our initial beliefs. The conditional distribution 𝜋(X ∣ 𝜃) is called the likelihood, and is exactly
the same as the likelihoods we’ve been considering all throughout the semester thus far! Finally,
𝜋(𝜃 ∣ X) is called the posterior distribution for our parameter (our updated beliefs based on
our prior beliefs and the data we observe), and 𝜋(X) is called a normalizing constant (since it
is constant in terms of 𝜃, and is the term needed to ensure that the posterior distribution is a
valid pdf, i.e., integrates to one).

In words, Bayesian statistics revolves around the following construct:

Posterior = Likelihood × Prior
Normalizing Constant

Prior distributions can be more or less informative, depending on context and modeling choice.
Bayesian philosophy can be categorized roughly into two groups: “subjective” Bayes, and
“objective” Bayes. Subjective Bayesians believe that prior information should be based on
real-world, prior knowledge, and should typically be informative. Objective Bayesians use
Bayesian inference as a tool to obtain reasonable estimates, but do not always incorporate
actual prior knowledge into their prior distributions. Just as with the Frequentist vs. Bayesian
debate, nowadaws, both subjective and objective Bayesian philosophies are generally accepted
to have their time and place.

When choosing a prior distribution without actual prior knowledge of the unknown parameter,
people sometimes opt for less informative priors (often called “uninformative” priors, though
this is a misnomer). An example of a less informative prior would be something like a Uniform
distribution on a large, non-infinite parameter space. People also sometimes choose to use
improper priors, such as a Uniform distribution on an infinite parameter space. Such priors
are called “improper” because they do not integrate to one, as pdfs must in order to be, by
definition, pdfs. The use of improper priors can still, in many cases, lead to proper posterior
distributions, but their use is still much less accepted in the broader statistical community.
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Uncertainty

In Frequentist statistics, our estimate of an unknown parameter is a single point, and we
quantify uncertainty with confidence intervals (based on the concept of repeated sampling).
In Bayesian statistics, rather than a single point, we instead obtain an entire distribution for
our unknown parameter. We can calculate single points from this distribution if we choose
to (the mean of the posterior distribution, median, etc.), and some of these points have nice
interpretations with regards to decision theory as we’ll see in the next chapter. We can
also make direct probability statements about the unknown parameter using this distribution,
without the need for repeated sampling!

Rather than confidence intervals, we instead construct credible intervals using the quantiles of
the posterior distribution. The interpretation of a credible interval is exactly the probability
that the parameter lies between two values, given our prior beliefs and the data that we
observe. Note that this is the interpretation that every student in introductory statistics
wants confidence intervals to have! This is an exceedingly natural interpretation of a measure
of uncertainty, and is much more easily understood by non-statisticians than the interpretation
of a confidence interval.

Computation

While Bayesian computation is not the focus of this course, it should be noted that in most
practical applications of Bayesian statistics, the computational “lift” of a Bayesian analysis
is generally higher than that of a Frequentist analysis. In some cases, such as when we
have conjugate priors (as defined below), computation is not a significant issue when doing
a Bayesian analysis. However, conjugate priors are relatively rare in the “real world,” and
so more advanced computational techniques are required to estimate posterior distributions.
There are two primary modes of estimating posterior distributions, with various computation
programmes that have been developed to assist with model-fitting:

1. Markov-chain Monte Carlo methods (MCMC)

2. Laplace approximations

MCMC methods are more classical, and include Gibbs samplers, Hamiltonian Monte Carlo
methods such as Stan, and more. These methods provide exact posterior distributions, but
rely on tuning parameters and convergence diagnostics that can potentially be difficult to work
with correctly. Laplace approximation techniques are newer, and include programmes such
as Integrated Nested Laplace Approximations (INLA) and Template Model Builder (TMB).
These methods provide approximate posterior distributions, but do not rely on tuning pa-
rameters nor do they require convergence diagnostics. They are often significantly faster than
MCMC methods to run, but do not provide accurate approximations to posterior distributions
in all cases.
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To learn more, take a look at Bayes Rules! (co-authored by Mac’s very own Alicia Johnson),
or take STAT 454.

8.1 Learning Objectives

By the end of this chapter, you should be able to…

• Articulate the differences in Frequentist and Bayesian philosophy
• Derive the posterior distribution for an unknown parameter based on a specified prior

and likelihood
• Evaluate the properties of posterior means, medians, etc.
• Articulate the impact of the choice of prior distribution on Bayesian estimation

8.2 Concept Questions

1. What is the difference between the Bayesian and Frequentist philosophies?
2. What are the typical steps to deriving a posterior distribution?
3. How is the posterior distribution impacted by the observed data and our choice of prior?

What sorts of considerations should we keep in mind in choosing a prior?
4. How are Bayes and maximum likelihood estimators typically related?
5. What are typical Frequentist properties (e.g., bias, asymptotic bias, consistency) of

Bayesian estimators (posterior means, for example)?

8.3 Definitions

Bayes’ Theorem, Prior distribution, Posterior distribution

For two random variables 𝜃 and X, Bayes’ theorem states that,

𝜋(𝜃 ∣ X) = 𝜋(X ∣ 𝜃)𝜋(𝜃)
𝜋(X) ,

where 𝜋(𝜃) denotes the prior distribution of 𝜃, 𝜋(X ∣ 𝜃) denotes the likelihood, 𝜋(𝜃 ∣ X)
denotes the posterior distribution of 𝜃, and 𝜋(X) denotes the normalizing constant.

Improper prior

An improper prior is a prior distribution that does not integrate to 1. This means that the
prior is not a probability density function, since all pdfs must integrate to 1. In practice,
some improper priors can still lead to proper posterior distributions, and as such, they are
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occasionally used as one type of non-informative prior. The most commonly used improper
proper is the uniform distribution from −∞ to ∞.

Conjugate prior

A conjugate prior is a prior distribution that is in the same probability density family as the
posterior distribution. Conjugate priors primarily used for computational convenience (as the
posterior distributions then have closed form solutions), or when conjugacy makes sense in the
context of the modeling problem. For examples of conjugate priors, the Wikipedia page linked
here is quite complete.

Posterior mode

The posterior mode is, as the name implies, the mode of the posterior distribution. In math,
the posterior mode is the estimate ̂𝜃 that satisfies,

𝜕
𝜕𝜃𝜋(𝜃 ∣ X) = 0.

Posterior median

The posterior median is, as the name implies, the median of the posterior distribution. In
math, the posterior median is the estimate ̂𝜃 that satisfies,

∫
̂𝜃

−∞
𝜋(𝜃 ∣ X)𝑑𝜃 = 0.5

Posterior mean

The posterior mean is, as the name implies, the mean of the posterior distribution. In math,
the posterior mean is the estimate

̂𝜃 = 𝐸[𝜃 ∣ X] = ∫ 𝜃𝜋(𝜃 ∣ X)𝑑𝜃

Credible interval

A 100(1 - 𝛼)% credible interval is an interval (Φ𝛼/2, Φ1−𝛼/2) for a parameter 𝜃 is given by

∫
Φ1−𝛼/2

Φ𝛼/2

𝜋(𝜃 ∣ X)𝑑𝜃 = 1 − 𝛼,

where Φ𝑝 denotes the 𝑝th quantile of the posterior distribution.
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8.4 Theorems

None for this chapter, other than Bayes’ theorem, which doesn’t really count as a theorem
cause it’s just a probability rule!

8.5 Worked Examples

Problem 1: Suppose we have a random sample 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃), and choose a

𝐵𝑒𝑡𝑎(𝛼, 𝛽) prior for 𝜃. Derive the posterior distribution, 𝜋(𝜃 ∣ 𝑋1, … , 𝑋𝑛).
Solution:

We can write,

𝜋(𝜃 ∣ 𝑋1, … , 𝑋𝑛) ∝ (
𝑛

∏
𝑖=1

𝑓(𝑥𝑖)) 𝜋(𝜃)

= (
𝑛

∏
𝑖=1

𝜃𝑥𝑖(1 − 𝜃)1−𝑥𝑖) Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝜃𝛼−1(1 − 𝜃)𝛽−1

= 𝜃∑𝑛
𝑖=1 𝑥𝑖(1 − 𝜃)𝑛−∑𝑛

𝑖=1 𝑥𝑖
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝜃𝛼−1(1 − 𝜃)𝛽−1

∝ 𝜃∑𝑛
𝑖=1 𝑥𝑖+𝛼−1(1 − 𝜃)𝑛−∑𝑛

𝑖=1 𝑥𝑖+𝛽−1

where we recognize the kernel of a 𝐵𝑒𝑡𝑎(∑𝑛
𝑖=1 𝑋𝑖 + 𝛼, 𝑛 − ∑𝑛

𝑖=1 𝑋𝑖 + 𝛽) distribution, and
therefore this is the posterior distribution for 𝜃.
Problem 2: Derive the posterior mean for 𝜃 in Problem 1.

Solution:

We know that the expectation of a 𝐵𝑒𝑡𝑎(𝑎, 𝑏) distribution is given by 𝑎
𝑎+𝑏 , and so we have

̂𝜃 = ∑𝑛
𝑖=1 𝑋𝑖 + 𝛼

∑𝑛
𝑖=1 𝑋𝑖 + 𝛼 + 𝑛 − ∑𝑛

𝑖=1 𝑋𝑖 + 𝛽 = ∑𝑛
𝑖=1 𝑋𝑖 + 𝛼

𝛼 + 𝛽 + 𝑛

Problem 3: Write the posterior mean from Problem 2 as a function of the MLE, ̂𝜃𝑀𝐿𝐸 = 𝑋,
and the prior mean for 𝜃. What do you notice?

Solution:

We can write,
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̂𝜃 = ∑𝑛
𝑖=1 𝑋𝑖 + 𝛼

𝛼 + 𝛽 + 𝑛

= ∑𝑛
𝑖=1 𝑋𝑖

𝛼 + 𝛽 + 𝑛 + 𝛼
𝛼 + 𝛽 + 𝑛

=
𝑛
𝑛 ∑𝑛

𝑖=1 𝑋𝑖
𝛼 + 𝛽 + 𝑛 +

𝛼(𝛼+𝛽)
𝛼+𝛽

𝛼 + 𝛽 + 𝑛
= ( 𝑛

𝛼 + 𝛽 + 𝑛) 𝑋 + ( 𝛼 + 𝛽
𝛼 + 𝛽 + 𝑛) ( 𝛼

𝛼 + 𝛽 )

and so we can see that the posterior mean is a weighted average of the prior mean and the
MLE (in this case, the sample mean)!

Problem 4: Suppose we have a random sample 𝑋1, … , 𝑋𝑛
𝑖𝑖𝑑∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), and choose a

𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) prior for 𝜆. Derive the posterior distribution, 𝜋(𝜆 ∣ 𝑋1, … , 𝑋𝑛).
Solution:

We can write,

𝜋(𝜆 ∣ 𝑋1, … , 𝑋𝑛)

∝ (
𝑛

∏
𝑖=1

𝑓(𝑥𝑖))
𝛽𝛼

Γ(𝛼)𝜆𝛼−1𝑒−𝛽𝜆

= (
𝑛

∏
𝑖=1

𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!
) 𝛽𝛼

Γ(𝛼)𝜆𝛼−1𝑒−𝛽𝜆

= 𝜆∑𝑛
𝑖=1 𝑥𝑖𝑒−𝑛𝜆

∏𝑛
𝑖=1 𝑥𝑖!

𝛽𝛼

Γ(𝛼)𝜆𝛼−1𝑒−𝛽𝜆

∝ 𝜆∑𝑛
𝑖=1 𝑥𝑖+𝛼−1𝑒−𝑛𝜆−𝛽𝜆

= 𝜆∑𝑛
𝑖=1 𝑥𝑖+𝛼−1𝑒−(𝑛+𝛽)𝜆

where we recognize the kernel of a 𝐺𝑎𝑚𝑚𝑎(∑𝑛
𝑖=1 𝑋𝑖 + 𝛼, 𝑛 + 𝛽) distribution, and therefore

this is the posterior distribution for 𝜆.
Problem 5: Derive the posterior mean for 𝜆 in Problem 4.

Solution:

We know that the expectation of a 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) distribution is given by 𝑎
𝑏 , and so we have
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�̂� = ∑𝑛
𝑖=1 𝑋𝑖 + 𝛼
𝑛 + 𝛽

Problem 6: Write the posterior mean from Problem 5 as a function of the MLE, �̂�𝑀𝐿𝐸 = 𝑋,
and the prior mean for 𝜆. What do you notice?

Solution:

We can write,

�̂� = ∑𝑛
𝑖=1 𝑋𝑖 + 𝛼
𝑛 + 𝛽

= ∑𝑛
𝑖=1 𝑋𝑖

𝑛 + 𝛽 + 𝛼
𝑛 + 𝛽

= 𝑛𝑋
𝑛 + 𝛽 +

𝛽𝛼
𝛽

𝑛 + 𝛽
= ( 𝑛

𝑛 + 𝛽 ) 𝑋 + ( 𝛽
𝑛 + 𝛽 ) 𝛼

𝛽

and so we can see (again) that the posterior mean is a weighted average of the prior mean and
the MLE (in this case, the sample mean)!

Problem 7: What is the asymptotic behavior of the posterior means calculated in Problems
2 and 5?

Solution:

In both cases, as 𝑛 → ∞, the posterior mean will approach the MLE! This is easiest to note
after we observe that the posterior mean is a weighted average of the MLE and the prior mean.
The weight on the prior mean will approach zero, as the weight on the MLE will approach 1,
as 𝑛 goes to infinity.
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9 Decision Theory

Statistical decision theory is the branch of statistics that concerns itself with figuring out
the best possible choice to make in a given situation using probability theory. Colloquially,
decisions often have pros and cons. We can quantify these pros and cons using a loss function,
and calculate the expected loss of a given decision (formally called risk). As you might guess,
risk is something we want to minimize. We can minimize risk (after formally defining it) using
the same calculus techniques we’ve been using all semester!

For the purposes of this class, the “decisions” we make are our choice of estimator for an
unknown parameters. This is one type of deterministic decision rule. At the beginning of
this course, we learned about two different intuitive approaches to defining estimators (or
“decisions”): maximum likelihood estimation and the method of moments. In this chapter,
we’ll find estimators that minimize risk!

While decision theory is not inherently Bayesian, it is one way to “justify” point estimates
from posterior distributions. Bayes estimates are posterior point estimates that minimize a
certain loss function. The posterior mean, median, and mode are all such point estimates, for
example.

Admissibility

An important concept in decision theory is the idea of admissibility. An admissible decision
rule is one that has the lowest possible risk out of all decision rules, for all possible parameter
values. It is easier to define (in math) an inadmissible decision rule, and then note that an
admissible decision rule is not inadmissible (double negative).

An decision rule 𝐷 (think, ̂𝜃) is inadmissible if there exists a rule 𝐷′ (think, some other
estimator) such that

𝑅(𝐷, 𝜃) ≤ 𝑅(𝐷, 𝜃) ∀𝜃
𝑅(𝐷′, 𝜃) < 𝑅(𝐷, 𝜃) for some 𝜃

where 𝑅(𝐷, 𝜃) is the risk of a decision 𝐷 for a paramater 𝜃. If 𝐷 is not inadmissible, it is
admissible. In words, in order for a decision rule to be admissible, it must have risk at least
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as small as every other possible decision rule everywhere in the parameter space, and it must
have strictly lower risk for at least one parameter value.

One of the most fascinating results to come out of decision theory (in my personal opinion)
is that the sample mean is not an admissible decision rule for the mean of a Multivariate
Normal distribution under MSE loss when the mean has greater than or equal to three di-
mensions! Relating this to what you know from introductory statistics, this means that (from
a decision theory perspective) least squares is not an admissible approach to estimating the
regression coefficients in a linear regression model with at least two covariates. The specific
(biased) estimator of the mean that provides a lower MSE in this case is called the James-Stein
estimator.

Minimaxity

One other “property” of a decision rule in addition to admissibility is called minimaxity. Think
once more about pros and cons of decisions. Some cons are worse than others (consider extreme
side effects of drugs, for example). A minimax decision rule is one that the lowest possible
maximal risk, out of a set of decision rules. It “minimizes” the “maximum”!

Bayes and minimax decision rules are generally related through the concept of a least favorable
prior sequence. Intuitively, a “least favorable” prior is one that leads to higher risk than other
priors. The theory involved in minimax problems requires a pretty solid understanding of
analysis techniques, and are beyond the scope of this course (but are interesting to look into
on your own time!).

9.1 Learning Objectives

By the end of this chapter, you should be able to…

• Derive a Bayes estimate for a common loss function
• Distinguish between admissible and inadmissible decision rules

9.2 Concept Questions

9.2.1 Reading Questions

1. What are some examples of commonly-used loss functions?
2. What are the typical steps to finding a Bayes estimate?
3. What are the Bayes estimates for absolute error loss and squared error loss?
4. What does it mean for a decision rule to be admissible (in colloquial language)?
5. What does it mean for a decision rule to be minimax (in colloquial language)?
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9.3 Definitions

Loss Function

Let ̂𝜃 be an estimator for 𝜃. A loss function associated with ̂𝜃 is denoted 𝐿( ̂𝜃, 𝜃), where
𝐿( ̂𝜃, 𝜃) ≥ 0 and 𝐿(𝜃, 𝜃) = 0. A reasonable loss function will increase the further away ̂𝜃 and 𝜃
are from each other.

Decision Rule

For the purposes of this class, an estimator! In the statistics literature, you will often see this
denoted 𝐷, but we can also denote the decision rule ̂𝜃 for this class.

Risk

In words, risk is the expected loss of our decision, given our data. In math,

𝑅( ̂𝜃, 𝜃) = 𝐸[𝐿( ̂𝜃, 𝜃) ∣ Y] = ∫ 𝐿( ̂𝜃, 𝜃)𝜋(𝜃 ∣ Y)𝑑𝜃

Bayes Estimate

A Bayes estimate is the estimate or decision rule that minimizes risk (expected posterior loss).
This is sometimes called a “Bayes rule” in the literature.

Unique Bayes Rule

For a given prior 𝜋(𝜃), a decision rule 𝐷𝜋 is a unique Bayes rule (estimate) if, for all 𝜃, a
decision rule is a Bayes rule if and only if it is equal to 𝐷𝜋. Bayes rules are unique when:

• The loss function used is MSE loss

• The risk of the Bayes rule is finite

• A 𝜎-field condition is satisfied (well beyond the scope of this course)

For what we consider in this course, whenever we use MSE loss in this course, the other two
conditions will be satisfied.

Admissibility

An decision rule 𝐷 is inadmissible if there exists a rule 𝐷′ such that

𝑅(𝐷′, 𝜃) ≤ 𝑅(𝐷, 𝜃) ∀𝜃
𝑅(𝐷′, 𝜃) < 𝑅(𝐷, 𝜃) for some 𝜃

where 𝑅(𝐷, 𝜃) is the risk of a decision 𝐷 for a paramater 𝜃. If 𝐷 is not inadmissible, it is
admissible.
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9.4 Theorems

Theorem (Unique Bayes rules are admissible). Any unique Bayes rule is admissible.

Proof. We’ll prove this by contradiction!

Suppose that 𝐷𝜋 is a unique Bayes rule with respect to some prior 𝜋(𝜃), and that 𝐷𝜋 is
inadmissible. Then there exists some other decision rule 𝐷′ such that 𝑅(𝐷′, 𝜃) ≤ 𝑅(𝐷𝜋, 𝜃),
for all 𝜃. Then,

𝑅(𝐷′, 𝜃) ≤ 𝑅(𝐷𝜋, 𝜃) (inadmissibility)
= inf

𝐷
𝑅(𝐷, 𝜋) (𝐷𝜋 is Bayes)

and since 𝑅(𝐷′, 𝜃) ≤ inf𝐷 𝑅(𝐷, 𝜋), 𝐷′ is Bayes. But 𝐷𝜋 is unique Bayes by assumption, so
this is a contradiction.

Therefore, 𝐷𝜋 is admissible.

9.5 Worked Examples

Problem 1: Show that the posterior median is the decision rule that minimizes risk with
respect to absolute loss, 𝐿( ̂𝜃, 𝜃) = | ̂𝜃 − 𝜃|.
Solution:

We can write the risk with respect to absolute loss as

𝑅(𝜃0, 𝜃) = 𝐸[𝐿(𝜃0, 𝜃) ∣ Y]

= ∫ 𝐿(𝜃0, 𝜃)𝜋(𝜃 ∣ y)𝑑𝜃

= ∫ |𝜃0 − 𝜃|𝜋(𝜃 ∣ y)𝑑𝜃

= ∫
𝐼{𝜃0≥𝜃}

(𝜃0 − 𝜃) 𝜋(𝜃 ∣ y)𝑑𝜃 + ∫
𝐼{𝜃0<𝜃}

(𝜃 − 𝜃0) 𝜋(𝜃 ∣ y)𝑑𝜃

= ∫
𝜃0

−∞
(𝜃0 − 𝜃) 𝜋(𝜃 ∣ y)𝑑𝜃 + ∫

∞

𝜃0

(𝜃 − 𝜃0) 𝜋(𝜃 ∣ y)𝑑𝜃

Taking the derivative with respect to 𝜃0, and setting this equal to zero we get
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0 ≡ 𝜕
𝜕𝜃0

𝑅(𝜃0, 𝜃)

= 𝜕
𝜕𝜃0

(∫
𝜃0

−∞
(𝜃0 − 𝜃) 𝜋(𝜃 ∣ y)𝑑𝜃 + ∫

∞

𝜃0

(𝜃 − 𝜃0) 𝜋(𝜃 ∣ y)𝑑𝜃)

= (𝜃0 − 𝜃0) 𝜋(𝜃0 ∣ y) − ∫
𝜃0

−∞
𝜋(𝜃 ∣ y)𝑑𝜃 − (𝜃0 − 𝜃0) 𝜋(𝜃0 ∣ y) + ∫

∞

𝜃0

𝜋(𝜃 ∣ y)𝑑𝜃

= − ∫
𝜃0

−∞
𝜋(𝜃 ∣ y)𝑑𝜃 + ∫

∞

𝜃0

𝜋(𝜃 ∣ y)𝑑𝜃

∫
𝜃0

−∞
𝜋(𝜃 ∣ y)𝑑𝜃 = ∫

∞

𝜃0

𝜋(𝜃 ∣ y)𝑑𝜃

(recalling that ∫𝑥
−∞ 𝑓(𝑦)𝑑𝑦 = 𝑓(𝑥) and ∫∞

𝑥 𝑓(𝑦)𝑑𝑦 = −𝑓(𝑥) and applying chain rule), and note
that these two integrals are equal when 𝜃0 is the posterior median.

Problem 2: Show that the posterior mode is the decision rule that minimizes risk with respect
to 0-1 loss,

𝐿( ̂𝜃, 𝜃) = {0 if ̂𝜃 = 𝜃
1 if ̂𝜃 ≠ 𝜃

when 𝜃 is a discrete random variable.

Solution:

Note that we can rewrite the 0-1 loss function as 𝐿( ̂𝜃, 𝜃) = 1 − 𝐼{ ̂𝜃 = 𝜃}. Then we can write,

𝑅(𝜃0, 𝜃) = 𝐸[𝐿(𝜃0, 𝜃) ∣ Y]
= ∑

𝜃
𝐿(𝜃0, 𝜃)𝜋(𝜃 ∣ y)

= ∑
𝜃

(1 − 𝐼{𝜃0 = 𝜃}) 𝜋(𝜃 ∣ y)

= ∑
𝜃

𝜋(𝜃 ∣ y) − ∑
𝜃

𝐼{𝜃0 = 𝜃}𝜋(𝜃 ∣ y)

= 1 − 𝜋(𝜃0 ∣ y)

since pmfs sum to 1. Then taking the derivative and setting this equal to zero gives
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0 ≡ 𝜕
𝜕𝜃0

𝑅(𝜃0, 𝜃)

= 𝜕
𝜕𝜃0

(1 − 𝜋(𝜃0 ∣ y))

= 𝜕
𝜕𝜃0

𝜋(𝜃0 ∣ y)

and the solution to this equation is, by definition, the posterior mode.

Note: For the case where 𝜃 is a continuous random variable, we need something called a
Dirac delta function to prove this. The reasoning for why we need this (and the proof, which
is similar to the discrete case) is given below.

Solution for continuous 𝜃 :

Note that we can rewrite the 0-1 loss function as 𝐿( ̂𝜃, 𝜃) = 1 − 𝛿{ ̂𝜃 − 𝜃}, where 𝛿 is the Dirac
delta function. Then we can write,

𝑅(𝜃0, 𝜃) = 𝐸[𝐿(𝜃0, 𝜃) ∣ Y]

= ∫ 𝐿(𝜃0, 𝜃)𝜋(𝜃 ∣ y)𝑑𝜃

= ∫ (1 − 𝛿(𝜃0 − 𝜃)) 𝜋(𝜃 ∣ y)𝑑𝜃

= ∫ 𝜋(𝜃 ∣ y)𝑑𝜃 − ∫ 𝛿(𝜃0 − 𝜃)𝜋(𝜃 ∣ y)𝑑𝜃

= 1 − 𝜋(𝜃0 ∣ y)

since pdfs integrate to 1. The reason why we can’t use the same indicator definition as for the
discrete case is because the integral of an indicator that is only positive at a single observation
is zero. The Dirac delta function, on the other hand, has positive mass (equal to 1) at 𝜃0−𝜃 = 0.
Take Projects in Real Analysis to learn more! Taking the derivative and setting this equal to
zero gives the same result as in the discrete case.
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10 Computational Optimization

Welcome to the last chapter of the course notes! There are no worked examples or concept
questions for this chapter, which is instead focused on practical implementation of a handful
of useful algorithms, and useful computational techniques that you may come across in your
future, statistical career. Go forth and compute!

10.1 Newton-Raphson

Recall from the second chapter of the course notes the typical procedure for finding an MLE:

1. Find the log likelihood

2. Take a derivative with respect to the unknown parameter(s)

3. Set it equal to zero, and solve

We previously saw that sometimes this procedure doesn’t work, in particular, when the support
of the density function depends on our unknown parameters. In these cases, we noted that
the MLE would be an order statistic. There are other situations, however, where neither the
MLE is neither readily found analytically nor is it an order statistic. In these cases, we turn
to computational techniques, such as Newton-Raphson.

Newton-Raphson is a root-finding algorithm, and hence useful when trying to maximize a
function (or a likelihood!). Suppose we want to find a root (i.e., the value of 𝑥 such that
𝑓(𝑥) = 0) of the function 𝑓 with derivative denoted 𝑓 ′. Newton-Raphson takes the following
steps:

1. Start with an initial guess 𝑥0

2. Update your guess according to 𝑥1 = 𝑥0 − 𝑓(𝑥0)
𝑓′(𝑥0)

3. Repeat step 2 according to 𝑥𝑛 = 𝑥𝑛−1 − 𝑓(𝑥𝑛−1)
𝑓′(𝑥𝑛−1) until your guesses have “converged”

(i.e. are very very similar)
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A maximum likelihood estimator is the root of the first derivative of the log-likelihood (a.k.a.
the value at which the derivative of the log-likelihood crosses zero). This means that, for
finding MLEs, the Newton-Raphson algorithm replaces 𝑓 = 𝜕

𝜕𝜃 log𝐿(𝜃).
We can visualize this process as follows:

−3 −2 −1 0 1

−
50

0
−

20
0

0
20

0

Tangent line to y = f(x) at xn=0

x

f(
x)

The equation of the tangent line to the curve 𝑦 = 𝑓(𝑥) at a point 𝑥 = 𝑥𝑛 is

𝑦 = 𝑓 ′(𝑥𝑛)(𝑥 − 𝑥𝑛) + 𝑓(𝑥𝑛)

−3 −2 −1 0 1
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0
−

20
0

0
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0

Find root of tangent line

x

f(
x)

The root of this tangent line (i.e., the place where it crosses the x-axis) is easy to find:

0 = 𝑓 ′(𝑥𝑛)(𝑥 − 𝑥𝑛) + 𝑓(𝑥𝑛) ⟺ 𝑥 = 𝑥𝑛 − 𝑓(𝑥𝑛)/𝑓 ′(𝑥𝑛)

Take this root of the tangent line as our next guess, then repeat…
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…and repeat…
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…and repeat…
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Step 3: update again
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…and repeat…
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Step 4: and again
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…and repeat…
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Step 5: and again

x

f(
x)

…and keep repeating until you’ve converged!

The multivariate version of Newton-Raphson is called the Scoring algorithm (also sometimes
called Fisher’s scoring), and is used in R to obtain estimates of logistic regression coefficients.

Motivating Example: Logistic Regression

Suppose that we observe data (𝑦𝑖, 𝑥𝑖) where the outcome 𝑦 is binary. A natural model for
these data is to assume the statistical model

𝑦𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖),

log( 𝑝𝑖
1 − 𝑝𝑖

) = 𝛽0 + 𝛽1𝑥𝑖.

This is a simple logistic regression model, with unknown parameters given by the logistic
regression coefficients 𝛽0, 𝛽1. Let’s attempt to find MLEs for 𝛽0 and 𝛽1 analytically.

Note that 𝑝𝑖 = 𝑒𝛽0+𝛽1𝑥𝑖
1+𝑒𝛽0+𝛽1𝑥𝑖 . Then the likelihood of our Bernoulli observations 𝑦𝑖 can be written

as

𝐿(𝛽0, 𝛽1) =
𝑛

∏
𝑖=1

( 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
)

𝑦𝑖

( 1
1 + 𝑒𝛽0+𝛽1𝑥𝑖

)
1−𝑦𝑖

Following the typical procedure, we log the likelihood…
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log(𝐿(𝛽0, 𝛽1)) =
𝑛

∑
𝑖=1

[𝑦𝑖 log( 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
) + (1 − 𝑦𝑖) log( 1

1 + 𝑒𝛽0+𝛽1𝑥𝑖
)]

=
𝑛

∑
𝑖=1

[𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖) − 𝑦𝑖 log(1 + 𝑒𝛽0+𝛽1𝑥𝑖) − log(1 + 𝑒𝛽0+𝛽1𝑥𝑖) + 𝑦𝑖 log(1 + 𝑒𝛽0+𝛽1𝑥𝑖)]

=
𝑛

∑
𝑖=1

[𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖) − log(1 + 𝑒𝛽0+𝛽1𝑥𝑖)]

…taking the partial derivatives with respect to 𝛽0 and 𝛽1 we get…

𝜕
𝜕𝛽0

log(𝐿(𝛽0, 𝛽1)) =
𝑛

∑
𝑖=1

[𝑦𝑖 − 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
]

𝜕
𝜕𝛽1

log(𝐿(𝛽0, 𝛽1)) =
𝑛

∑
𝑖=1

[𝑥𝑖 (𝑦𝑖 − 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
)]

…and if you try to solve the system of equations given by

0 ≡
𝑛

∑
𝑖=1

[𝑦𝑖 − 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
]

0 ≡
𝑛

∑
𝑖=1

[𝑥𝑖 (𝑦𝑖 − 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
)]

you’ll get nowhere! There is no analytical (sometimes called “closed-form”) solution. In this
case, we’d need to use the Scoring algorithm to solve for the regression coefficient estimates,
since we have more than one unknown parameter.

Why do anything analytically, if Newton-Raphson exists?

You may be wondering why you’ve been doing calculus/algebra the entire semester, when such
an algorithm exists. The answer is two-fold.

1. Going through the steps of finding an MLE analytically helps build intuition. We saw
that in the vast majority of cases, maximum likelihood estimators are functions of sample
means. This is less obvious when doing everything numerically (using an algorithm). In
addition to gaining insight from finding MLEs by hand, this practice also gave you the
opportunity to learn/use common “tricks” in statistics, that will find their way into
problems you complete down the road or research you may eventually conduct.
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2. Numerical optimization is slow. For simple cases like the ones we’ve seen in class, numer-
ical optimization would techniques like Newton-Raphson would run relatively quickly.
However, for more complex likelihoods with many unknown parameters, various opti-
mization techniques can be so slow as to be computationally prohibitive. Even with
continual improvements in computational power (and improvements in the algorithms
themselves), computational speed is an important consideration when conducting sta-
tistical research or developing new methodology. If it takes someone two weeks to fit
their regression model using numerical optimization, for example, that person may never
fit a regression model ever again, or give up entirely. Especially when considering who
has access to computational power, this can become an equity issue. If you can solve
something analytically, do it. It’s significantly faster in the long-term, even it takes you
some time to do the calculus/algebra.

10.2 Simulation Studies

Sometimes proofs are hard. In such cases (and more generally), it can often be useful to “test”
or observe properties of estimators in a computational setting, rather than in a rigorous math-
ematical context. This is where simulation studies come into play, and if you eventually find
yourself conducting statistical research, knowing how to conduct a well-designed, reproducible,
simulation study is an incredibly important skill.

The general idea of simulation study is to generate realistic settings (data) that could be
observed in the real world, in order to compare properties of various estimators and their
behavior in scenarios where the “truth” is known (because you generated the truth!). Steps
include:

1. Determine your simulation settings (different parameter values, sample sizes, etc.)

2. Generate many data sets for each setting

3. Compute your estimator / implement your method for each data set

4. Record the relevant property of that estimator / method for each data set

5. Summarize your results across data sets and simulation settings

This can be a great way to get a feel for how certain estimators/methods behave in different
settings without needing to rigorously prove something. Additionally, it can be used to inform
more rigorous proofs down the line; if we can better understand how estimators/methods
behave, we may be able to relate that behavior to existing proofs and build upon them!
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10.3 Gibbs Samplers

Not everything is conjugate. In cases where we don’t have conjugate priors, posterior dis-
tributions may not have closed-form, analytical pdfs, and instead we rely on Markov-chain
Monte-Carlo (MCMC) algorithms (or Laplace approximations) to generate samples from pos-
teriors.

As noted in the Bayes chapter of our course notes, Bayes Rules! is a great place to go for
an introduction to Bayesian statistics. Here, we’ll talk through one (classical) example of an
MCMC approach to posterior inference; Gibbs Samplers.

The gist of Gibbs Sampling is that, when we have more than one unknown parameter, we can
obtain the joint posterior distribution for all parameters by updating our guesses about each
parameter, one at a time. This involves working with what are typically called full conditionals
(the distribution of each parameter conditional on everything else).

The Gibbs Sampling algorithm is as follows:

1. Choose initial values for each unknown parameter, 𝜃(0)
1 , 𝜃(0)

2 , …, 𝜃(0)
𝑝

2. Sample 𝜃(0)
1 ∼ 𝜋(𝜃(0)

1 ∣ 𝜃(0)
2 , … , 𝜃(0)

𝑝 , y)

3. Sample 𝜃(0)
2 ∼ 𝜋(𝜃(0)

2 ∣, 𝜃(0)
1 , 𝜃(0)

3 , … , 𝜃(0)
𝑝 , y)

4. …

5. Sample 𝜃(0)
𝑝 ∼ 𝜋(𝜃(0)

𝑝 ∣ 𝜃(0)
1 , … , 𝜃(0)

𝑝−1, y)
6. Repeat many times, always sampling new observations conditional on your most recent

guess (iteration) for each parameter!

It feels almost magical, but the end result is that we obtain many samples from the joint
posterior distribution for all unknown parameters! MCMC methods such as Gibbs Samplers
are what is known as “exact” methods for conducting Bayesian inference, because so long as
sampling goes according to plan*, the posterior draws will be from the exactly correct, joint
posterior distribution. This is opposed to Laplace approximation techniques which are, by
definition, “approximate.”

*Let’s define “according to plan.” Sometimes algorithms can go wrong. We saw an example of
this with Newton-Raphson, where if we pick a terrible starting value, the algorithm can some-
times diverge. With Gibbs Samplers, we should be careful of checking convergence diagnostics.
A visual tool for this is called a Trace Plot. Trace plots show the values of parameters that
are being sampled across iterations. The values across iterations are referred to as chains.

Here are some examples of chains that have converged:
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There are many other convergence diagnostics you will need to consider if you end up doing
research involving MCMC algorithms. A recent research paper on convergence diagnostics
that is generally accepted now as best practice among Bayesian statisticians can be found
here.
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