Correlated Data Notes

Brianna Heggeseth

2025-07-30

Table of contents

Preface
1 Introduction
1.1 Data Types o o e e e
1.1.1 Data Type Examples
1.2 Motivation for Methods
1.2.1 Simulated Data
1.2.2 OLS Estimation e
1.3 General Themes e
1.3.1 Questions of Interest Lo
1.4 Outline e e
2 Probability Review

2.1 Random Variable
2.2 Moments e e e e e e e e
2.2.1 Expectation
2.2.2 Covariance and Variance
2.2.3 Correlation e
2.3 Joint Probability Distributions o oo
2.4 Random Vectors and Matrices
2.4.1 Random Vectors
2.4.2 Random Matrices.
2.5 Multivariate Normal Distribution
2.5.1 Contours of Density o
2.5.2 Properties of Multivariate Normal

Modeling Covariance

3.1 Random Process e
3.2 Autocovariance
3.2.1 Autocovariance Function
3.2.2 Autocorrelation Function 0L
3.2.3 Covariance Matrix
3.2.4 Correlation Matrix
3.3 Models, Simplifications, & Constraints
3.3.1 Common Constraints

3.3.2 Common Model Structures 40

3.4 BEstimating with Data L oo 45
3.4.1 Sample Covariance Matrix 45
3.4.2 Sample Autocovariance Function 46
3.4.3 Sample Semivariogram 47

Model Components 48

4.1 Trend e 49
4.1.1 Parametric Approaches Lo 49
4.1.2 Nonparametric Approaches 57
4.1.3 In Practice: Estimate vs. Remove 71

4.2 Seasonality 72
4.2.1 Parametric Approaches Lo 73
4.2.2 Nonparametric Approaches, 81

Time Series Data 84

5.1 R: Time Series Objects o o 84

5.2 ACF: Autocorrelation Function 85

5.3 Modeling the Errors L Lo 90

5.4 Autoregressive Models 91
5.4.1 AR(1) Model 91
5.4.2 Random Walk 95
543 AR(p) Model 99

5.5 Moving Average Models L o 101
5.5.1 MA(1) Model 101
5.5.2 MA(q) Model 105

5.6 AR(p)as MA(00) o oo 107
5.6.1 AR(1) Model 108
5.6.2 AR(p) Model 108
5.6.3 AR(p) Estimation: Yule-Walker Equations 109

5.7 ARMA Models e 110
5.7.1 Model Selection 116

5.8 Real Data Example 118

5.9 ARIMA and SARIMA Models. 125
5.9.1 ARIMA Models. e 125
5.9.2 Seasonal ARIMA Models 126

5.10 Forecasting L 129
5.10.1 Prediction Intervals 131

511 Appendix 138
5.11.1 Derivations for AR(1) Model 138

5.12 Other Time Series References 141

6 Longitudinal Data 142
6.1 Sources of Variation L 142
6.2 Data Examples 144

6.2.1 Example 1: The orthodontic study data of Potthoff and Roy (1964). . . 144
6.2.2 Example 2: Vitamin E diet supplement and growth of guinea pigs . 146
6.2.3 Example 3: Epileptic seizures and chemotherapy 148
6.2.4 Example 4: Maternal smoking and child respiratory health 150
6.3 R: Wide V. Long Format 153
6.4 Notation e e 155
6.4.1 Multivariate Normal Probability Model 157
6.5 Failure of Standard Estimation Methods 159
6.5.1 Ordinary Least Squares 159
6.5.2 Generalized Least Squares 161
6.6 Generalized Linear Models L o oo 163
6.6.1 Distributional Assumption. 164
6.6.2 Systematic Component o 164
6.6.3 Link Function 164
6.7 Marginal Models Lo 166
6.7.1 Model Specification L oo 166
6.7.2 Interpretation 167
6.7.3 Estimation 168
6.7.4 Model Selection Tools and Diagnostics 174
6.8 Mixed Effects L 179
6.8.1 Individual Intercepts L 179
6.8.2 Individual Slopes 183
6.8.3 Multi-level or Hierarchical Model 185
6.8.4 Mixed Effects Model 186
6.8.5 History 187
6.8.6 Interpretation 187
6.8.7 Estimation 189
6.8.8 Model Selection e 191
6.8.9 Predicting Random Effectso 0. 198
6.8.10 Predicting Outcomes 200
6.8.11 Generalized Linear Mixed Effects Models 201

7 Spatial Data 203

7.1 Coordinate Reference Systems (CRS) 206
7.1.1 Ellipsoido 206
7.1.2 Datum e e 207
7.1.3 Projection 209

7.2 Data Models e 213
7.2.1 Vector e e e e e e 213
7.22 Raster L 214

7.3 Working with Spatial Datain R.
7.3.1 RPackageso
732 ReadindatatoR Lo
733 Dataclassesin R L
7.3.4 Convert data class types e
7.3.5 Static Visualizations o
7.3.6 More R Resources

7.4 Point Processes (optional)o oL
7.4.1 Poisson Point Processes
7.4.2 Non-Parametric Intensity Estimation
7.4.3 Parametric Intensity Estimation
7.4.4 Detecting Interaction Effects 00000
7.4.5 Cluster Poisson Processes
7.4.6 Inhibition Poisson Processes
7.4.7 Other Point Process Models

7.5 Point Referenced Data (optional) L.
7.5.1 Gaussian Process
7.5.2 Covariance Models
7.5.3 Variograms, Semivariograms c oo oL
7.5.4 Kriging e

7.6 Areal Data
7.6.1 Polygons
7.6.2 Neighborhood Structure
7.6.3 Neighborhood-based Correlation
7.6.4 Spatial Models
7.6.5 Meaningful Distances oo

References
Appendices
A Matrix Algebra

A.1 Matrix & Vector Addition
A1l Propertieso

A.2 Matrix & Vector Multiplication
A2.1 Properties

A3 Matrix Transpose o o e e e e
A.3.1 Properties

A4 Inner product L.

A5 Vector Difference

A6 Vector Length

A7 Vector Distance

A8 Vector Space 321

A9 Rankofmatrix 322
A 10 Singularity 322
A1l Determinant e e 322
A12 Matrix Inverse L e 323
A.13 Trace of matrix for square matrix 323

A13.1 Properties 323
A.14 Vector Projection 324
A.15 Orthogonality 324
A.16 Eigenvalues and Eigenvectors 324
A.17 Positive Definiteness 324
A.18 (Ordinary) Least Squares 325

A.18.1 Calculus Approach L 325

A.18.2 Projection Approach 326

Preface

Greetings!

This course is about three types of correlated data. In most of the statistical methods
and models you've learned in past classes, you assumed that observations are independently
drawn from a population through random sampling or independently generated from a random
process. For this to be true, the observed value of a randomly chosen unit or subject cannot
influence or be systematically related to the observed value of another unit or subject.

There are many circumstances in which the independence assumption is not valid or real-
istic to assume.

e If you collect data on biological siblings, the children with similar genetics and home
environment will be more similar to each other than randomly selected children.

¢ Educational data collected in schools is not independent. Students in the same classroom
will be more similar in their learning than students from different classrooms because
they have a common teacher and curriculum.

e Data collected on the same individuals over time is correlated; the repeated measure-
ments on an individual will be more similar than measurements across individuals.

One of the learning goals of this course is to understand the consequences of incorrectly making
the independence assumption in a statistical model and the potential impact it has on our
conclusions.

We’ll also learn about appropriate statistical models and methods for analyzing data generated
with natural dependencies and correlation.

1 Introduction

1.1 Data Types

In this class, we focus on temporal data, in which we have repeated measurements over time
on the same units, and spatial data, in which the measurement location plays a meaningful
role in the analysis.

There are two types of temporal data we discuss in this class.

1. We call temporal data a time series if we have measurements on a smaller number of
units or subjects taken at many (typically > 20) regular and equally-spaced times.

2. We call temporal data longitudinal data if we have measurements on many units or sub-
jects taken at approximately 2 to 20 observation times (potentially irregular, unequally-
spaced times) that may differ between subjects. If we have repeated measurements on
each subject in different conditions, rather than necessarily over some time, we call this
data repeated measures data, but the methods will be the same for both longitudinal
and repeated measures data.

Spatial data can be measured as

1. observations at a point in space, typically measured using a longitude and latitude
coordinate system, or

2. areal units, which are aggregated summaries based on natural or societal boundaries
such as county districts, census tracts, postal code areas, or any other arbitrary spatial
partition.

The common thread between these types of data is that observations measured
closer in time or space tend to be more similar (more positively correlated) than
observations measured further away in time or space.

1.1.1 Data Type Examples

Here are some examples of these types of data.

e Time series: Below are the daily use frequencies for the search term “cupcake” from
Google Trends (data source). While there is a spatial component (areal units are coun-
tries), we could focus solely on the time series and ignore the country. We notice a larger
overall trend of increase and then a slight decrease in the search frequency. We also note
there may be a cyclic pattern that may indicate that there are predictable times of the
year in which searches for “cupcake” might be more or less popular.

® Cupcake Worldwide, 2004 - present

Note

Interest by region Region ¥ i= ¥ O -(

¢ Longitudinal Data: Below are measurements of reasoning ability over time on a group
of subjects from the ACTIVE clinical trial. In the plot, each individual is represented by
one connected line segment or trajectory (data source). We see that among the subjects
that were randomized to the Reasoning Training group, on average, their reasoning
measure increased after training and then leveled off, similar to other groups. We also
see quite a bit of variation in reasoning abilities between subjects and across time within
a subject.

https://trends.google.com/trends/explore?q=%2Fm%2F03p1r4&date=all
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4248?q=Advanced+Cognitive+Training+for+Independent+and+Vital+Elderly+%2528ACTIVE%2529

source('Active_Cleaning.R')

activelong %>%

Reasoning

ggplot(aes(x = Years, y = Reasoning)) +
geom_point() +

geom_line(aes(group = factor(AID))) +
geom_smooth(method = 'loess',color = 'blue'
facet_wrap(~ INTGRP)

, se = FALSE) +

Memory Training | | Reasoning Training

60 1

40 1

N
o
1

o
1

0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0
Years

¢ Spatial Point Referenced Data: Below are homes for sale in St. Paul and are spread
out in space (longitude, latitude) (data source). We might be able to explain why
some houses cost more than others using building characteristics (number of bedrooms,
bathrooms, etc.). Even after accounting for those differences, houses close together have
similar values due to other intangible factors about the location. We’ll need to account

for this dependency in models to predict home prices.

10

https://www.zillow.com/homes/for_sale/pmf,pf_pt/globalrelevanceex_sort/44.974332,-93.09617,44.886708,-93.219767_rect/12_zm/

o, J -~ w ——
.. Vgagox _$180K LLLTS $105K
i oSk RIS TOLMIT . @ ——
“O-g @ 0 @%®. rs T
() $249K ;. o)
Marshall Ave $369K ., 275K — () il Ave w). $12@
L P30 K et s233K 0K $20%g o > L= 2
z @ $.'s._|'. 375K iﬂ]—EWI“ - t_.uu T=oorc =S ,.sl “.‘OSE 2 units
7 ggnns 130K : = $265K gava™
5 5@ 350k @ 5259 s?j;o_mox o 27K o ﬁwi.)-.-sx K
G SIM Semmiae $353K 0 g5 Ao N @)@ 2 Kl
S : Bront o OL $525Kk @), ¥ sar 825K 390K
1 o: ©® $875.0 = $995K | |_$950K ‘2 units @ o
s : —33aK @ $575K T {@F 5t
b Esfi.sm $660K 285K @ °) @ 2Zo5m 0 g
G — > $300K - $51 $400K .r .29M $170K EN-
@ @0 sso0k M.x:n,—n-u_—:ST ER A $_’;{'~.——— i $2.N'I) szoun- 155K
$545K s03:@ ~OVEL(/@D @)@ KoK ~ & ,
 $700r—— %2 $375K s $300K;550K P () :
0 o K 0 07 T Wok @ik g S1ES1K
9 s3g5K $350K “1 0. @7 @40k 194k $125K
K $425K WE 220 —udoK 5 s ——— =
B $475K ——— 27 s162K ® J
o, - § ;;LIBQK. L) _.:':" A 2 units
= S£00K ._——’:‘K;—’ $435K @ 5701k @2 550K
$ésb.|<' . $300K MK susk; A
& - ' s Lilydale w
kK $458K s2.08 5 '
—4?‘-1‘ (J h.W—\.fﬂ onteal $830K i @ o G
z ¢ $179K ¢,.@, $399K . o $275K |
o - — 3
%% £ .% OB ©, $16 0K o) Q= umts,
.ﬂ.r%p ‘_‘- $315K ,SP $1.79 $350K - 2 $325K< $419K :
T L v —— ! Paud Ave - =
(59) (] e @ < H
) $197k € s260K ()
$2 msg_:\"‘:_lﬁ'f' et . $6 56K . Wentworth Ay

1.2 Motivation for Methods

To motivate why this class is important, let’s consider applying linear regression (least squares)
models that you learned in your introductory statistics course, Stat 155. We will call the
method of least squares regression you used ordinary least squares (or OLS, for short).

1.2.1 Simulated Data

Suppose we have 50 observations over time where our outcome of interest is observed yearly,
and it linearly increases over time, but there is random variation from year to year. If the
random fluctuation is large and positive one year, it is more likely to be large and positive

11

https://bcheggeseth.github.io/Stat155Notes

next year. In particular, let’s assume that our outcome y, roughly doubles every year, such
that

Yp =242, + €

where z; = 1,25 = 2, ..., 257 = 50 represents the year since 1950 and the random fluctuation, or
the noise, €, are positively correlated from time ¢ to t+1 and generated from an autoregressive
process — we’ll talk about this process later.

Let’s see a plot of one possible realization (for one subject or unit) generated from this random
process. The overall trend is a line with an intercept at 0 and a slope of 2, but we can see that
the observations don’t just randomly bounce around that line but rather stick close to where
the past value was.

| OOOOOO O
o o)
E o | o
e © oo®
5 B 0
@) [o% OOOooooO
o _| IR
N OoOoooOOO
[[[[[[
0 10 20 30 40 50

Years since 1950

1.2.2 OLS Estimation

If we were to ignore the correlation in the random fluctuation across time, we could fit a simple
linear regression model,

iid
Y, =Bo+ Bz, +¢€, € ~ N(0,0%)

using OLS to estimate the general or overall relationship with year, we’ll call that big picture
relationship the trend.

Im(y ~ x) %>% summary()

12

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-20.8574 -6.1287 -0.3483 6.6895 19.7229

Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) -0.69654 2.36584 -0.294 0.77
X 2.19734 0.08074 27.213 <2e-16 **x
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.239 on 48 degrees of freedom
Multiple R-squared: 0.9391, Adjusted R-squared: 0.9379
F-statistic: 740.6 on 1 and 48 DF, p-value: < 2.2e-16

Even with linear regression, we do well estimating the slope (BAI = 2.19 when the true slope
value in how we generated the data is 8; = 2). But let’s consider the standard error of that
slope, the estimated variability of that slope estimate. The 1m() function gives a standard
error of 0.08074.

WARNING: This is not a valid estimate of the variability in the slope with correlated data.
Let’s generate more data to see why!

Let’s simulate this same process 500 times (get different random fluctuations) so we can get a
sense of how much the estimated slope (which was a “good” estimate) might change.

We can look at all of the estimated slopes by looking at a histogram of the values in beta.
sim_cor_data_results %>
ggplot(aes(x = beta)) +

geom_histogram() +
geom_vline(xintercept = 2, color = 'red') #true value used to generate the data

13

40+

301
I=
>
3 20-
o

10

01 IIII
1.0 15 2.0 25 3.0

beta

It is centered at the true slope of 2 (great!). This indicates that our estimate is unbiased (on
average, OLS using the Im() function gets the true value of 2). The estimate is unbiased if the
expected value of our estimated slope equals the true slope we used to generate the data,

E(By) =B
Now, let’s look at the standard errors (SE) that OLS using 1m() gave us.
sim_cor_data_results %>/
ggplot(aes(x = se)) +

geom_histogram() +
geom_vline(xintercept = sd(beta), color = 'red') #true variability

14

1201

80 1

count

40 -

0.1 0.2 0.3
se

The true variability of the slopes is estimated by the standard deviation of beta from the
simulations (around 0.33), but the values provided from 1m() are all between 0.03 and 0.1.

e The function 1Im(), which assumes the observations are independent, underestimates the
true variation of the slope estimate.

Why does this happen?

If the data were truly independent, then each random data point would give you unique,
important information. If the data are correlated, the observations contain overlapping in-
formation (e.g., knowing today’s interest in cupcakes tells you something about tomorrow’s
interest in cupcakes). Thus, your effective sample size for positively correlated data is going
to be less than the sample size of independent observations. You could get the same amount
of information about the phenomenon with fewer data points. You could space them apart
further in time so they are almost independent.

The variability of our estimates depends on the information available. Typically, the sample
size of independent observations captures the measure of information, but if we have correlated
observations, the effective sample size (which is usually smaller than the actual sample size)
gives a more accurate measure of the information available.

In this specific simulation of n = 50 from an autoregressive order 1 process, the effective sample
size is calculated as 50/(1 + 2% 0.9) = 17.9, where 0.9 was the correlation used to generate
the autoregressive noise. The 50 correlated observations contain about the same amount of
information as about 18 independent observations.

15

If you are interested in the theory of calculating effective sample size, check out these two blog
posts, Andy Jones Blog and the Stan handbook

What is the big takeaway?

When we use 1m(), we are using the ordinary least squares (OLS) method of estimating a
regression model. In this method, we assume that the observations are independent of each
other.

If our data is actually correlated (not independent, the OLS slope estimates are good (unbi-
ased), but the inference based on the standard errors (including the test statistics, the p-values,
and confidence intervals) is wrong.

In this case, the true variability of the slope estimates is much higher than the OLS estimates
given by 1m() because the effective sample size is much smaller.

1.3 General Themes

With any of the data examples above or the examples we talk about in class, observations
taken closer in time or space are typically going to be more similar than observations taken
further apart in space or time.

We may be able to explain why data points closer together are more similar using predictors
or explanatory variables, but there may be unmeasured characteristics or inherent dependence
that we can’t explain with our collected data.

To be more precise, we will assume that the observed outcome at time ¢t (we will generalize
this notation to spatial data) can be modeled as

Yy = f(xy) + N

trend noise

where the trend can be modeled as a deterministic function based on predictors, and there is
leftover random noise. This noise might include both serial autocorrelation due to observations
being observed close in time, plus random variability or measurement error from the data
collection instrument.

Time Series Example
Consider the Google search frequency for “cupcake” data example.

The number of people who are searching for the term “cupcake” should be a function of general
interest in cupcakes. This interest could change throughout the year by season, or it may be
reflected in the number of cupcake shops in business or the number of mentions of cupcakes

16

https://andrewcharlesjones.github.io/journal/21-effective-sample-size.html
https://mc-stan.org/docs/2_21/reference-manual/effective-sample-size-section.html

on network television. We could use these measured predictors in modeling the overall trend
in search frequency.

What else may explain differences in the interest in cupcakes over time? Even if we can collect
and account for these other cultural characteristics, the number of searches for cupcakes will be
similar from one day to the next because culture and general interest typically do not change
overnight (unless an extreme event happens).

Spatial Example

Consider the home sale prices from Zillow. Price will be determined by a combination of the
home characteristics (e.g., number of bedrooms, bathrooms, size, home quality) as well as
neighborhood characteristics (e.g., walking distance to amenities, perception of school repu-
tation). These characteristics could be used to model the general trends of sale prices. Even
after controlling for these measurable qualities, homes that are next to each other or on the
same block will have a similar price.

For each data type, we discuss these two components, the trend and the noise. In particular, we
can’t assume the noise is independent, so we need to model the covariance and correlation
of the noise, treating it as a series of random variables.

1.3.1 Questions of Interest

1. Dependence of the random variables in the process: ‘How do future values depend on
past values? How do values depend on neighboring values?’

e Think: Covariance and correlation of random variables
2. Long-Term Averages: ‘What is the average value at a particular point in time (or space)?’

o Think: Expected value of random variables (we’ll call the overall long-term average the
trend)

3. Cycles: ‘Are there recurring patterns in the average values?’

e Think: Cycles in the expected value of random variables (we’ll call the local cycles
seasonality)

We'll come back to questions 2 and 3 for each sub-field. Let’s spend some time thinking about
the covariance and correlation in the context of a random process.

With all three of the correlated data types, we explicitly or implicitly model the covariance
between observations, so we need to be quite familiar with the probability theory of covari-
ance.

17

1.4 Qutline

Let’s go on a journey together, learning the foundational approaches to dealing with correlated
(temporal or spatial) datal

We'll start with a review of important probability concepts and review/learn some basic ma-
trix notation that simplifies our probability model notation by neatly organizing our model
information. Then we’ll spend some time thinking about how we define or encode dependence
between observations in models.

The course will be structured so that we spend a few weeks with each type of data structure.
We'll learn the characteristics and structure that define that type of correlated data and the
standard models and approaches used to deal with the dependence over time or space. By the
end of this course, you should have a foundational understanding of how to analyze correlated
data and be able to learn more advanced methodologies within each of these data types.

18

2 Probability Review

With correlated data, we often have repeated measures of some characteristic of a group of
subjects or, more generally, of a set of units, collected with some random mechanism.

Before we collect data, we imagine those observations to be random variables.

Let’s make sure we are all on the same page with the probability concepts that are vital for
us to understand the foundational models for correlated data.

2.1 Random Variable

A random variable is a variable whose value is subject to variation due to chance.

Note: Mathematically, a random variable X : Q — E is a measurable function from the sample
space set of possible random outcomes, §2, to some set E where usually, & = R.

A discrete random variable is a random variable that can take only a countable number of
distinct values (so the set E is countable).

« Example: A Binomial random variable is a discrete random variable X where X can
take values 0,1,2,...,n and P(X =x) = (")p‘”(l —p)" "

« Example: A Poisson random variable is a discrete random variable X where X can
take values 0,1,2,... and P(X =) = Aree>

!

The distribution of a discrete random variable is described as a list of values and their
associated probabilities, usually described with a probability mass function, p(z) = P(X =

A continuous random variable is a random variable that can take an uncountable (think
infinite) number of distinct numerical values (the set E is a subset of R).

The distribution of a continuous random variable is described with probabilities of intervals
of values (rather than distinct values) through the cumulative distribution function (cdf),
F(z)=P(X <).

For most of the distributions we will talk about, the distribution can also be described with
a probability density function (PDF) such that the cdf is defined as an integral over the pdf,
F(x)= fj)o f(y)dy where f(y) > 0 is the pdf.

19

« Example: Uniform distribution on [a,b] where f(z) = ;- if a < 2 < b;0 otherwise .
1 l(M)Q.

o Example: Gaussian distribution on the real line, R, where f(x) = v A
o Example: Beta distribution on [0, 1] where f(z) = %xa_l(l)

2.2 Moments

2.2.1 Expectation

The expected value of a random variable is the long-run average and calculated as a weighted
sum of possible values (weighted by the probability)

p=EX)=) =z -P(X=ux)

all ©

for a discrete random variable and
w=FEX)= / xf(x)dz

for a continuous random variable where f(x) is the probability density function.
Properties

For random variables X and Y and constant a, the following are true (you can show them
using the definitions of expected value),

E(X+a)=EX)+a
E(aX)=aE(X)
E(X+Y)=EX)+E(Y)

Example Proof of E(X +a) = E(X)+a

Let’s assume X is a discrete random variable. Then, by the definition of expected value,

20

E(X+a)=) (z+a)P(X =x) (2.1)

— azzw(xP(X =2) 4 aP(X =2)) (2.2)
zgxp(xzx)JrZaP(X:x) (2.3)
= aEH&) +aZP(XaH:x) (2.4)
— B(X) + aluf (2.5)

Let’s assume X is a continuous random variable. Then, by the definition of expected value,

B(X+a) = [(@+a)f(a)ds (27)
— /(xf(:c) + af(x))dx (2.8)

= /a:f(x)da:+/af(x)dx (2.9)

= F(X)+ a/f(x)dx (2.10)
=E(X)+axl (2.11)

2.12)

2.2.2 Covariance and Variance
The covariance between two random variables is a measure of linear dependence (i.e., average

product of how far you are from the mean or expected value in each variable). The theoretical
covariance between two random variables, X and Y, is

Cou(X,Y) = B((X — jiy) (Y — piy))
where the means are defined as py = F(X) and py = E(Y).

The variance is the covariance of a random variable with itself,

Var(X) = Cov(X, X) = E(X — px)(X — px)) = B((X — px)?)

21

Covariance of a Sequence or Series of Random Variables

In this class, we will often work with a sequence or series of random variables that are indexed
or ordered. Imagine we have a series of indexed random variables X1, ..., X,,. The subscripts
indicate the order. For any two of those random variables, X; and X,, the covariances are
defined as

Cov(X, Xy) = E((X) —) (Xy, —)
where p; = E(X;) and p;, = E(X}).

Note: the order of the variables does not matter, Cov(X;, X;) = Cov(X,, X;), due to the
commutative properties of multiplication.

Notation

We'll use the Greek letter, sigma, o, to represent covariance. With a series of indexed random
variables X1, ..., X,,, we use the subscripts or indices on the ¢ as a short-hand for the covariance
between those two random variables,

oy, = Cov(X), Xy)

where [,k € {1,2,...,n}.

If the index is the same, [= k, then the covariance of the variable with itself is the variance,
a measure of the spread of a random variable.

Let us denote the variance as

o? = Cov(X;, X;) = Var(X,)
It is the average squared distance from the mean,

012 = Var(X)) = Cov(X;, X)) = E((X; —) (X; —) = E((X; — 111)?)

The standard deviation (SD) of X is the square root of the variance,

We often interpret the standard deviation because the units of the SD are the units of the
random variable and not in squared units.

Theorem: If X; and X, are independent, then Couv(X;, X;) = 0. (See the technical note
below to help you prove this.) The converse is not true.

Properties

22

For random variables X;, X;, X, and constants a, b, and ¢, the following are true (you can
show them using the definitions),

Cov(aX;,bX,,) = abCov(X, X},)
Cov(aX; + ¢, bX},) = abCov(X;, X},)

Cov(aX; +bX;, cX}) = acCov(X;, X)) + beCov(X;, X)

Thus, we have the following properties of variance,

Var(aX,) = Cov(aX;,aX,) = aaCov(X,, X,) = a*Var(X,)

Var(aX; +bX;) = Cov(aX, +bX;,aX, +bX))
= Cov(aX;,aX; +bX;) + Cov(bX;,aX; + bX;)
= Cov(aX},aX;) + Cov(aX;,bX;) + Cov(bX,aX;) + Cov(bX;,bX;)
= a?Var(X;) + b*Var(X;) + 2abCov(X;, X))

2.2.3 Correlation
The standardized version of the covariance is the correlation. The theoretical correlation be-

tween two random variables is calculated by dividing the covariance by the standard deviations
of each variable,

o Cov(X;, X}) Cov(X}, Xj)
Cor(X), X,) = py, = 2 — bk o=t
or(l k) Plk 0,04, SD(X,)SD(X},) \/Var(Xl)\/VaT’(Xk>

23

2.3 Joint Probability Distributions

For a set of discrete random variables (X, ..., X}.), the joint probability mass function of
X1, ..., X}, is defined as the function such that for every point (x4, ...,x;) in the k-dimensional
space,

p(xy,..xy,) = P(Xy=2q,... X, =x,) >0

If (xy,...,2;) is not one of the possible values for the set of random variables, then
p(zq,...,x;) = 0. Since there can be at most countably many points with p(z4,...,x;) > 0 and
since these points must account for all the probabilities, we know that

p(xy,.xy) =1

all (zq,...,3y)

and for a subset of points called A,

P((zq,...,xy) € A) = Z p(zq, .oy)

(21,073) EA

The joint distribution function of a set of continuous random variables (Xi,..., X}) is
defined in terms of the cumulative joint distribution function,

F(I’l,...,.%'k) = P(Xl < Jfl,...,Xk < 1’]{;)

For a set of continuous random variables (X7, ..., X}.), the joint density function of X, ..., X},
is defined as the non-negative function defined for every point (z,...,x;) in the k-dimensional
space such that for every subset A of the space,

P((zq,...,z3) € A) :/.../Af(azl,...,xk)dxl...d:ck

In order to be a joint probability density function, f must be a non-negative function and

/ / Flay, oo zy)day..dzy, = 1

2.3.0.1 Technical Note

For two discrete random variables, the covariance can be written as

Cov(X}, X)) = Z Z (2 —) (@), —)Py (g,)

all z; all z;,

24

where p;.(x;, ;) is the joint probability distribution such that p,.(z;,z,) = P(X;, =
ryand Xy = ;) and) z >l . pue(@,) = 1.

For two continuous random variables, the covariance can be written as

Cov(X,, X,) = / / (21—) @y — o) F s)y

. o . . o [e.e] 5
where f(z;, ;) is the joint density function such that [[(2, 2;)dzde, = 1. We'll
see some examples of joint densities soon.

Two random variables are said to be statistically independent if and only if
[y, zy) = filz) fr(z)
for all possible values of z; and z;, for continuous random variables and
P(X) =2, X, = x) = P(X; = 2)) P(X), = xy,)
for discrete random variables.

A finite set of random variables is said to be mutually statistically independent if and
only if
f(@y, 29,) = fi(zy) - fir(zp)

for all possible values for continuous random variables and
P(Xy) =21, Xy = 29, .., Xy = 1) = P(X; = 21) P(Xy = 75) - P(X}, = x3)
for discrete random variables.

2.4 Random Vectors and Matrices

For a set of random variables, we can model the joint distribution of those random variables.

Matrix notation can help us organize distributional information about the set of random
variables.

2.4.1 Random Vectors

A random vector is a vector (a collection) of m indexed random variables such that

25

The expected value of a random vector X, written as F(X), is a vector of expected values,

E(X,) M
E(X,,) [

where E(X,) = pq,,BE(X,,) = t,,

The covariances of all pairs of values in a random vector X can be organized in a covariance
matrix,

2
01 0O12 = O1m
2
0’ 0' cee 0'
S =Cov(X)=| "2t 72 2m
2
Om1 Om2 Om

using the notation introduced above that o7 = Var(X);) and o, = Cov(X,, X,)). We'll talk
much more about the covariance matrix.

2.4.2 Random Matrices

Let X,; be an indexed random variable where index i = 1,...,n refers to different subjects
(different units) and the index j = 1,...,m refers to different observations over time or space.
We can organize these variables in random vectors and then into a matrix for convenience.

The random matrix X is written as
Xy X o Xy
X — X.21 X.22 Xy
X, X, - X
in which each column represents one observation time and the rows represent the n subjects

or individual units.

The expected value of a random matrix X, written as E(X), is a matrix of expected values,

26

2.4.2.1 Properties

For random matrices or vectors of the same size X and Y and constant (not random) com-
patible matrices or vectors A and B, the following are true,

E(X+Y)=EX)+E(Y)
E(AXB)= AE(X)B

¢ Note: We will use bold typeface for random vectors and matrices and normal typeface
for random variables.

2.5 Multivariate Normal Distribution

The normal probability density function for random variable X with mean p and standard

deviation o is
)= e (! (“”)2)
= —-—— X PE—
V2o P 2 o

2

(=E) =@—me?) e —p

g

Note:

The multivariate normal probability density function for a k-dimensional random vector
X = (Xy, ..., X},) with mean vector y and covariance matrix ¥ is

) = g o (—5 =S =)

Example - Bivariate Normal

When k = 2, our random vector includes X; and X,. Let p;, be the correlation between the
two variables X; and X,.

2 2
1 1 [(avrm) 2pp, (En) (222)¢ (222)]
— 2(1-p75) 91 91 92 o2
f(@y,25) = ri2

e
2m0105\/1 = piy

See below for 3D plots of the bivariate density function under two correlation values (p;4 =0
indicating no correlation and p,, = 0.8 indicating a strong positive correlation) with standard-

ized assumptions for the variance and mean, 0% = 03 = 1 and p; = gy = 0.

27

rho <- 0

bivn <- MASS::mvrnorm(5000, mu = c(0, 0), Sigma = matrix(c(1l, rho, rho, 1), nrow = 2))
bivn.kde <- MASS::kde2d(bivn[,1], bivn[,2], h =2, n = 50) #density function values (we'll di
persp(bivn.kde, phi = 30, theta = 30,xlab='x1l',ylab='x2',zlab="f(x1,x2)',main = expression(r]

P12=0

rho <- 0.8

bivn <- MASS::mvrnorm(5000, mu = c(0, 0), Sigma = matrix(c(1l, rho, rho, 1), nrow = 2))
bivn.kde <- MASS::kde2d(bivnl[,1], bivn[,2], h =2, n = 50)

persp(bivn.kde, phi = 30, theta = 30,xlab='x1l',ylab='x2',zlab="'f(x1,x2)',main = expression(r]

P12=0.8

2.5.1 Contours of Density

The multivariate normal density function is constant on surfaces where the square of the
Mahalanobis-type distance (x — ,u)TEfl(x —) is constant and these are called contours.

The contours are ellipsoids defined by
(x—p)"S (x—p) =¢?

28

such that the ellipsoids are centered at p and have axes +cy/\;e;, where ¥e, = \e, for
i =1,...,k. Thus, ¢/, are the radii of the axes (), are eigenvalues of ¥) and the eigenvectors
e, are the directions of the axes.

Also, in this context, ¢ is the Mahalanobis distance between points in this distribution. We
may refer to ¢ as the radius, but note that this is the radius of the ellipse only when it is a
circle and \; = 1.

X2

H2

M1 X1

Below are contours of bivariate normal density functions with the values representing the
density function (height).

rho = 0
bivn <- MASS: :mvrnorm(5000, mu = c(0, 0), Sigma = matrix(c(1, rho, rho, 1), 2))
bivn.kde <- MASS::kde2d(bivn[,1], bivn[,2], h =2, n = 50)

contour (bivn.kde,xlab="'x1',ylab='x2"',main = expression(rho[12] == 0),x1lim=c(-4,4),ylim=c(-4,

29

P12=0

X2
0
|

x1

rho = 0.8

bivn <- MASS::mvrnorm(5000, mu = c(0, 0), Sigma = matrix(c(1, rho, rho, 1), 2))

bivn.kde <- MASS::kde2d(bivn[,1], bivn[,2], h =2, n = 50)

contour (bivn.kde,xlab="'x1',ylab='x2"',main = expression(rho[12] == 0.8),xlim=c(-4,4),ylim=c(~

P12=0.8
<t -
N p—
¥ o o
~N
|
s 4
| | | | |
-4 -2 0 2 4
x1

30

These should look familiar if you looked at a topographic map for hiking in mountainous
areas.

2.5.2 Properties of Multivariate Normal

Linear Combinations

If X is distributed as a k-dimensional normal distribution with mean g and covariance 3, then
any linear combination of variables (where a is a vector of constants), a’ X = a; X; + a5 X, +
-+ a, X, is distributed as normal with mean a’y and covariance a’ $a

Chi-Squared Distribution The chi-squared distribution with & degrees of freedom is the
distribution of the sum of the squares of k independent standard normal random variables.
You typically prove this is true in Probability.

Theorem: If a random vector X € R* follows a multivariate normal distribution with mean s
and covariance 3, then (X —z)7Y ™" (X —) follows a Chi-squared distribution with k degrees
of freedom.

Sketch of proof: Using the Cholesky decomposition, we get ¥ = LL”. Then define a random
vector Y such that
Y =L (X —p)

Show that Y is a vector of independent standard normal random variables. You can use the
properties of linear combinations above.

Then show that we have a sum of independent standard normals,

(X —p) "2 (X —p)=YTY = Z V2

Extensions of Intervals to Multiple Dimensions - Ellipse Percentiles Now that we
know about the contours of a multivariate normal distribution and we know the probability
distribution for the contours, we can extend the ideas of intervals (such as confidence intervals
or intervals of uncertainty) to a multivariate situation.

The contours containing « of the probabilities under the multivariate normal distribution are
the values of x that satisfy

(x—)T S (x— p) = x3(a)

where x?(«) is the « - 100 percentile of a chi-squared distribution with k degrees of freedom.
Therefore,

P((x— TS (x—p) < xi(@) =a
That means that we can calculate ellipses that correspond to a probability of say a = 0.95,

for example (probability = volume under the surface). In a univariate situation, these ellipses
correspond to intervals such that the area under the curve equals the probability of 0.95.

31

https://www.rei.com/learn/expert-advice/topo-maps-how-to-use.html

For a bivariate normal with mean vector (0,0), variances equal to 1, and correlation equal to
0 (and then 0.8), there is R code below to calculate the 0.5 and 0.95 ellipses based on the
theoretical mean and covariance (green lines) or estimated based on sample data (red lines).

x <- MASS::mvrnorm(500, mu = c(0,0), Sigma = matrix(c(1,0,0,1),2))

tmp <- car::dataEllipse(x[,1],x[,2]) #based on data

c2 <- gchisq(.5,df = 2)

car::ellipse(c(0,0), matrix(c(1,0,0,1),2),sqrt(c2), col=3, 1lty=2) #theoretical
c2 <- gchisq(.95,df = 2)

car::ellipse(c(0,0), matrix(c(1,0,0,1),2),sqrt(c2), col=3, lty=2)

o™

[QV

i
a
—_— (@)
= i

I
v

x[, 1]

x <- MASS: :mvrnorm(500, mu = c(0,0), Sigma = matrix(c(1,.8,.8,1),2))

tmp <- car::dataEllipse(x[,1],x[,2]) #based on data

c2 <- qchisq(.5,df = 2)

car::ellipse(c(0,0), matrix(c(1,.8,.8,1),2),sqrt(c2), col=3, 1lty=2) #how we generated data
c2 <- qchisq(.95,df = 2)

car::ellipse(c(0,0), matrix(c(1,.8,.8,1),2),sqrt(c2), col=3, 1lty=2)

32

33

3 Modeling Covariance

For this course, all of the methods we discuss have a way to model the inherent dependence
in the data, directly or indirectly. Ultimately, they are modeling the covariance of pairs of
random variables. Before we discuss models for a specific data type, let’s think about modeling
covariance more generally.

In previous sections, we discussed a random vector, a set of random variables. These random
variables could represent different quantities or characteristics. We hinted that these variables
could be ordered or indexed in some way.

We will formalize that here. We focus now on a random process, a series of random variables
representing the same characteristic ordered or indexed by time or space.

3.1 Random Process

A random process is a series of random variables indexed by time or space, {Y,},.r, defined
over a common probability space. We can organize a finite set of these variables in a random
vector,

o For time series data, the set of indices T' = {0, 1,2, ...,n} indicates the time ordering of
the random variables.

o For longitudinal data, we index our data for one unit/subject with a random process
where T' = {1,2,...,m} indicates the ordering of the repeated random variables over
time.

« For spatial data, T refers to a set of points in space measured by (longitude, latitude).

Key Point: A random process can capture how a characteristic evolves over time (or space or
both), and Y represents the random value of that characteristic.

34

3.2 Autocovariance

Remember that the covariance between two random variables, X and Y, is defined as

Cou(X,Y) = E((X — BE(X))(Y — E(Y))) = E(XY) — E(X)E(Y)

The covariance values range over the entire real line (—oo, 00).

3.2.1 Autocovariance Function

For a random process {Y, },cp, we can summarize the covariance between two random variables
in the process with different indices, Y, and Y}, as a function of the times/spaces, ¢ and s.
The autocovariance function of s and ¢ is the covariance of the random variables at those
times/spaces,

Yy (t,s) = Cov(Y,,Y,) = E((Y, — pu) (Y — 1)) = E(Y,Y}) — pgpy
where p, = E(Y,) and u, = E(Y,).
Note:

o For times series, t and s will be integer indices of time.
e For longitudinal data, ¢ and s will refer to observations times.
o For spatial data, ¢ and s will be points in space, (longitude, latitude).

Throughout this course, we’ll use the capital Greek letter Sigma, X, to denote covariance.
We'll use it in a few different ways, but it will always refer to covariance.

For example, we can refer to the covariance between the first and second random variable with
¥y (1,2) and the covariance between the second and fourth with ¥y-(1,4). We’ll come back to
thinking about simplifying this autocovariance function.

3.2.2 Autocorrelation Function

In general, correlation is easier to interpret than covariance since correlation values are re-
stricted to be between -1 and 1 (inclusive).

Remember that the correlation of two random variables X and Y is defined as
Cov(X,Y)
Cor(X,)Y)= ——— -
or(XY) = Spx)SDY)

We can define an autocorrelation function as

35

- Sy (s,t)
py(s,t) = \/Zy(s, $)Sy (t,1)

We use p to notate theoretical correlation (in contrast to r, which refers to the sample corre-
lation coefficient).

For example, we can refer to the correlation between the first and second random variable with
py(1,2) and the correlation between the second and fourth with py(1,4). Again, we’ll come
back to thinking about simplifying this autocorrelation function.

3.2.3 Covariance Matrix

If we have m random variables Y = (Y7,...,Y,,) of a random process, we might be interested
in knowing the covariance between every pair of indexed variables. We could plug the indices
into the autocovariance function. The covariance between the ith observation and the jth
observation in the process would be

0=y (i,])

Among the m variables, there are m(m — 1)/2 unique pair-wise covariances and m variances
and they could be organized into a m X m symmetric covariance matrix,

2

0] 0190 *° O1m
2
o g e 0
_ _ 21 2 2m
Sy = Con(Y) = | _ ,
o o 0’2
ml m2 m

2

where o7 = 0,;. Note that o;; = 0,

7%
The covariance matrix can also be written using the definitions of covariance and the properties
of matrix algebra as

Sy = Cou(Y) = E((Y — E(Y))(Y — E(Y))7)
=E(YY") — up”
where E(Y) = p.

36

3.2.3.1 Properties

For a p x m constant matrix A and m dimensional random vector Y,

Cov(AY) = ACov(Y)AT

This is an important property because it gives us the covariance of a linear combination of our
random process values: AY. This is also very useful when working with regression estimates
(we’ll come back to this).

3.2.3.2 Positive Semidefiniteness

For the autocovariance function to be valid, it must be positive semidefinite. We can check
this by evaluating it at any set of m indices and checking to see if the resulting covariance
matrix is positive semidefinite. A symmetric matrix, X, is positive semidefinite if and only if

xT'¥x > 0 for all x € R™

or equivalently,

The eigenvalues of ¥ are all > 0

In practice, this is important to be aware of when modeling covariance, as the covariance
matrix must be positive semidefinite.

To ensure this matrix is positive semidefinite, we could use the Cholesky Decomposition in
the modeling process because the decomposition is only valid for positive definite (> instead
of > in the definitions above) matrices,

» =LLY

where L is a lower triangular matrix (upper diagonal is all 0), we’ll return to this.

37

3.2.4 Correlation Matrix

If we have m random variables Y = (Y7,...,Y,), we might be interested in knowing the au-
tocorrelation between every pair of observations. The correlation between the ith observation

and the jth observation would be

Pij = py (i, 7)

These m(m — 1)/2 correlations could be organized into a m x m symmetric correlation
matrix,

1 P12 = Pim
Ry =Cor(Y) = p:21 1 p%m
Pm1 Pm2 1

Note that p,; = p;

it

If you have the covariance matrix ¥, you can extract the correlation matrix,

R, =D 'x, D!
where D = /diag(Xy), a diagonal matrix with standard deviations along the diagonal be-

cause

3.3 Models, Simplifications, & Constraints

We’ve been discussing covariance and correlation in terms of probability theory so far. What
about if we have data?!

We need replicates to estimate any parameter (mean, covariance, correlation, etc.). For the
covariance of pairs of variables, that means we need either:

o multiple realizations of a random process (which could be multiple subjects), OR
o simplifying assumptions about the structure of the autocovariance function.

38

3.3.1 Common Constraints

When we model covariance, we often make simplifying assumptions and use model constraints
to estimate the covariance from the data. Below are some of the common constraints or
assumptions we use. Like any assumption, we should check that it is a valid assumption to
make with a dataset before reporting on the conclusions of the model.

3.3.1.1 Weak Stationarity

If the autocovariance function of a random process only depends on the difference in
time/space, s —t (e.g., covariance depends only on the difference in observation times and
not time itself), then we say that the autocovariance is weakly stationary, such that

Ty(t,s) =%y(s—t)

For example, this means that the covariance between the 1st and 4th observation is the same
as the 2nd and 5th, 3rd and 6th, etc. This simplifies our function as we only need to know the
difference in time/space rather than the exact time/space.

Additionally, a random process that is weakly stationary has a constant mean, u = E(Y,) =
E(Y,), and constant variance, 02 = Var(Y,) = Var(Y,). When we use the term “stationary”
from now on, we refer to a “weak stationary” process.

A random process is weakly stationary if it has a

1. Constant Mean pu = E(Y;) = E(Y})
2. Constant Variance o = Var(Y,) = Var(Y})
3. Autocovariance (and autocorrelation) Function is only a function of the vector difference

in time/space

2

In a covariance matrix, the constant variance of stationarity, c? = 0, means that we can write

the covariance matrix as the variance times correlation matrix,

EY — JQRY
where Ry is the correlation matrix.

Additionally, with the stationary assumption, the correlation matrix can be written in terms
of the vector difference in time/space, similar to the covariance matrix.

If we are considering spatial data where space is defined by longitude and latitude, a weakly
stationary process means that the covariance depends on the difference between two points
in space, which is defined by both the distance (as the crow flies Euclidean distance) and the
direction (e.g., a point on a compass such as NE or West or defined as the angle degrees from
North). In linear algebra terminology, the difference is the vector difference.

39

3.3.1.2 Isotropy

A stronger assumption than weak stationarity is that the autocovariance function depends only
on the distance in time/space, ||s — t||.

If this is true, then we typically say that the autocovariance function and random process are
isotropic, such that the dependence doesn’t change as a function of the angle of the difference
in space (NE v. West) but just the vector distance or vector norm. That is,

Ty (t,s) = Ty (lls =)

Notes:

o This distinction only applies to spatial data in which our index is a vector of length two
or more.
e Many spatial models we will use assume an isotropic covariance function.

3.3.1.3 Intrinsic Stationarity

If assuming a process is weak stationary is too strong a constraint, a slightly weaker constraint
is that a random process is intrinsic stationary if

Var(Y,,;, —Y,) depends only on h

meaning that the variance of the difference of random variables only depends on the vector
difference, h, in time or space.

This is similar to the concept of weak stationarity, but weak stationarity implies intrinsic
stationarity, but not vice versa.

3.3.2 Common Model Structures

Here are some common correlation functions that are all weakly stationary and isotropic:

40

3.3.2.1 Compound Symmetry / Exchangeable correlation

The correlation between two random variables is constant, no matter the difference in
time/space.

The autocorrelation function is defined as

pifs—t+0
_t —
pyls =1 {1ifs—t:0

tibble(
h = seq(0,5,length = 500), #distance
rho = c(1,rep(0.5, 499))
) %>h
ggplot(aes(x = h, y = rho)) +
geom_line() +
geom_hline(yintercept = 0,color='grey') +
ylim(-1,1) +
labs(title = 'Autocorrelation Function:\nExchangeable/Compound Symmetry', x = 'Distance')
theme classic()

Autocorrelation Function:
Exchangeable/Compound Symmetry

1.0

0.5 1

0.01

rho

_05 g

_10 -

0 1 2 3 4 5
Distance

41

3.3.2.2 Exponential Correlation

The correlation between two random variables decays to 0 exponentially as the difference in
time/space increases.

pY(S — t) — e_HS_tH/(z’
where ¢ > 0

phi = 2

tibble(
h = seq(0,5,length = 500) #distance

) %>h
mutate(rho = exp(-h/phi)) %>%
ggplot(aes(x = h, y = rho)) +
geom_line() +
geom_hline(yintercept = 0,color='grey') +
ylim(-1,1) +
labs(title = 'Autocorrelation Function:\nExponential', x = 'Distance') +
theme_classic()

Autocorrelation Function:

Exponential
1.01
0.5 1
2 o0-
-0.51
-1.01
0 1 2 3 4 5

Distance

42

3.3.2.3 Squared Exponential / Gaussian Correlation

The correlation between two random variables decays (slightly different decay exponentially)
to 0 as the difference in time/space increases. It decays more slowly than exponentially for
differences < ¢, but for differences > ¢, it decays faster.

py(s — t) = e*(HS*tH/¢)2

where ¢ > 0

phi = 2
tibble(
h = seq(0,5,length = 500) #distance
) h>%
mutate(rho = exp(-(h/phi)~2)) %>%
ggplot(aes(x = h, y = rho)) +
geom_line() +
geom_hline(yintercept = 0,color='grey') +
ylim(-1,1) +
labs(title = 'Autocorrelation Function:\nSquared Exponential/Gaussian', x = 'Distance') +
theme_classic()

Autocorrelation Function:
Squared Exponential/Gaussian

1.01

0.5 1

0.0 1

rho

-0.51

-1.01

0 1 2 3 4 5
Distance

43

3.3.2.4 Spherical Correlation

The correlation between two random variables decays (different decay than exponentially) to
0 as the difference in time/space increases.

_ 1150 = tl/8) + 05(1ls — 11l /9)° it s — 1] < ¢
py(s—t) = .
0 otherwise

where ¢ > 0

phi = 2

tibble(

h = seq(0,5,length = 500) #distance
) h>%

mutate(rho = if_else(h<phi,1 - 1.5*%(h/phi) + 0.5%(h/phi)~3,0)) %>%
ggplot(aes(x = h, y = rho)) +

geom_line() +

geom_hline(yintercept = 0,color='grey') +

ylim(-1,1) +

labs(title = 'Autocorrelation Function:\nSpherical', x = 'Distance') +
theme classic()

Autocorrelation Function:

Spherical
1.04
0.51
2 001
-0.5 1
-1.0 1
0 1 2 3 4 5

Distance

Let’s look at the last three on the same graph. With the same value of ¢, the correlation
function can look quite different.

44

h = seq(0,5,by=.1) #distance

phi = 2

rho = rep(0, length(h))

rho [h<phi] = 1 - 1.5%(h[h<phil/phi) + 0.5%(h[h<phil/phi)"3
rho2 = exp(-(h/phi)~2)

rho3 = exp(-h/phi)

plot(h, rho, type ='l', ylim=c(0,1))

lines(h, rho2, 1lty=2)

lines(h, rho3, 1lty=3)

rho
0.4

0.0
I

3.4 Estimating with Data

In this chapter, we have discussed the theory around autocovariance in function and matrix
format and models, simplifications, and constraints that can be imposed and assumed.

In this last section, we’ll introduce the idea of estimating the numerical values of covariance
and correlation based on data after assuming models, simplifications, and constraints.

The three estimators mentioned below can be used outside a larger statistical model, so we’ll
start here.

3.4.1 Sample Covariance Matrix
To estimate the covariance matrix, 3, with observed data sampled from the larger population

as n realizations of these m random variables (imagine n individual people with m observations
over time), we can calculate the sample covariance matrix,

45

n—1 i=1

where y; = (Y;1, Yiz, -+ Yim) and y = n"" 2?21 Y-

Therefore, the sample variances (on the diagonal of Sy) are the familiar estimates we saw in
our introductory course,

1
2 __ E 2

i=1

Note: This estimation is only possible for longitudinal data if we observed m repeated mea-
surements for each case at the same time. We typically don’t have more than one realization
of the process for time series and spatial data. For longitudinal data, if we have unbalanced
data collected at irregular times, we’ll need to use one of the common model structures to
estimate the covariance. In the Longitudinal Data chapter, we’ll return to this.

3.4.2 Sample Autocovariance Function

If we assume that observed data come from a stationary process, we can estimate the autoco-
variance function with the sample autocovariance function (ACVF),

1 n—|k|

= Z Ye — 0) Yy — V)

where y is the sample mean, averaged across time/space, because we are assuming it is con-
stant.

For any sequence of observations of the random process, vy, ...,y,,, the estimated ACVF has
the following properties:

1. Ck :ka'
2. ¢g>0and |¢;] < ¢

In the Time Series Data chapter, we’ll return to this.

46

3.4.3 Sample Semivariogram

If we assume that observed data come from a stationary process (or at least an intrinsic
stationary process), we can estimate the semivariogram,

1
'7<h> = §V(I’I"(Y;+h - Ys)

To estimate the semivariogram, let H, ..., H, be a partition of the space of possible distances
or lags h, with h,, being a representative spatial lag/distance in H,,. Then use your stationary
process y, to estimate the sample/empirical semivariogram.

1
A(hy,) = — (i —y;)°
2- |{Z —J€ Hu}‘ {i;qu} /

47

4 Model Components

As we introduced at the beginning of the course, most models we use for data are written in
terms of model components of a deterministic or systematic component plus noise or error,

Y, = f(%) + ?f

deterministic ~ random noise

The deterministic component would generally give the average outcome as a function of z,,
which could represent time/space and/or explanatory variables measured across time/space.

o In Stat 155 (Introduction to Statistical Modeling), we model the deterministic component
with linear combinations of explanatory variables, f(x) = By + 121 + Baxg + - + 8,7,
and we assume the noise was independent.

o In Stat 253 (Statistical Machine Learning), we learn parametric and nonparametric
tools to model the deterministic component (polynomials, splines, local regression, KNN,
trees/forests, etc.) for prediction.

We’ll build on your existing knowledge and learn a few more tools for modeling the deter-
ministic components that arise with correlated data. We’ll use the notation of time series to
discuss model components, but these ideas apply to longitudinal and spatial data.

Typically, we write a time series model with three components (not just two) and model them
separately:

Y, = f(zy) + s(z) + €
—— S~—— ~
deterministic trend deterministic seasonality = random noise

Let’s define these model components and the types of questions that are driving the model-
ing.

1. Trend: This is the long-range average outcome pattern over time. We often ask our-
selves, “Is the data generally increasing or decreasing over time? How is it changing?
Linearly? Exponentially?”

48

2. Seasonality: This refers to cyclical patterns related to calendar time, such as seasons,
quarters, months, days of the week, or time of day, etc. We might wonder, “Are there
daily cycles, weekly cycles, monthly cycles, annual cycles, and/or multi-year cycles?”
(e.g., amount of sunshine has a daily and annual cycle, the climate has multi-year El
Nino and La Nina climate cycles on top of annual seasonality of temperature)

3. Noise: There is high-frequency variability in the outcome not attributed to trend or
seasonality. In other words, noise is what is left over. We might break up this noise into
two noise components:

o serial correlation: the size and direction of the noise today is likely to be similar tomorrow

¢ independent measurement error: due to natural variation in the measurement device

We often ask, “Are there structures/patterns in the noise so that we could use probability
to model the serial correlation? Is there a certain range of time or space in which we have
dependence? Is the magnitude of the variability constant across time?”

4.1 Trend

Let’s start by focusing on the trend component. Our goal here is to estimate the overall
outcome pattern over time.

We'll plot the residuals (what is left over) over time to see if we’ve successfully estimated and
removed the trend. We'll see if the average residual is fairly constant across time. If not, we
must try a different approach to model/remove the trend.

4.1.1 Parametric Approaches
4.1.1.1 Global Transformations

If the trend, f(x,), is linearly increasing or decreasing in time (with no seasonality), then we
could use a linear regression model to estimate the trend with the following model,

Y, =By + Bz + &
where z, is some measure of time (e.g., age, time from baseline, etc.).

If the overall mean trend is quadratic, we could include a z7 term in the regression model,

Y, = By + By +/3237% T €

49

Any standard regression technique for non-linear relationships (polynomials, splines, etc.)
could also be used here to model the trend. As discussed in Chapter 1, we can use ordinary
least squares (OLS), 1m() in R, to get an unbiased estimate of these coefficients in linear
regression. But remember, the standard errors and subsequent inference (p-values, confidence
intervals) may not be valid due to correlated noise.

Let’s look at some example data and see how we can model the trend.
Data Example 1

Below are the quarterly earnings per share of the company Johnson and Johnson from 1960-
1980 in the astsa package (Stoffer 2025). The first observation is the 1st quarter of 1960
(t =1) and the second is the 2nd quarter of 1960 (¢ = 2)

library(astsa) # R package for time series

33

Qtrl Qtr2 Qtr3 Qtré
1960 0.710000 0.630000 0.850000 0.440000
1961 0.610000 0.690000 0.920000 0.550000
1962 0.720000 0.770000 0.920000 0.600000
1963 0.830000 0.800000 1.000000 0.770000
1964 0.920000 1.000000 1.240000 1.000000
1965 1.160000 1.300000 1.450000 1.250000
1966 1.260000 1.380000 1.860000 1.560000
1967 1.530000 1.590000 1.830000 1.860000
1968 1.530000 2.070000 2.340000 2.250000
1969 2.160000 2.430000 2.700000 2.250000
1970 2.790000 3.420000 3.690000 3.600000
1971 3.600000 4.320000 4.320000 4.050000
1972 4.860000 5.040000 5.040000 4.410000
1973 5.580000 5.850000 6.570000 5.310000
1974 6.030000 6.390000 6.930000 5.850000
1975 6.930000 7.740000 7.830000 6.120000
1976 7.740000 8.910000 8.280000 6.840000
1977 9.540000 10.260000 9.540000 8.729999
1978 11.880000 12.060000 12.150000 8.910000
1979 14.040000 12.960000 14.850000 9.990000
1980 16.200000 14.670000 16.020000 11.610000

class(jj) # ts stands for time series R class

[1] "tS"

50

plot(jj) # plot() is smart enough to make the right x-axis because jj is ts object

i _|
—
o _|
— —
Ln_
© T I I I I
1960 1965 1970 1975 1980
Time

We see that the earnings are overall increasing over time, but a bit faster than a linear rela-
tionship (there is some curvature in the trend). Let’s transform this dataset into a data frame

to use ggplot2, an alternative graphing package in R.

library(ggplot2)
library(dplyr)

jjTS <- data.frame(
Value = as.numeric(jj),
Time = time(jj), # time() works on ts objects
Quarter = cycle(jj)) # cycle() works on ts objects

quadTrendMod <- 1lm(Value ~ poly(Time, degree = 2, raw

TS <= TS %>%

TRUE), data

jjTS) # poly() fits a |

mutate(Trend = predict(quadTrendMod)) # Add the estimated trend to the dataset

3JTS %>%
ggplot(aes(x = Time, y = Value)) +
geom_point() +
geom_line() +

geom_line(aes(x = Time, y = Trend), color = 'blue', size = 1.5) +

theme_classic()

Warning: Using “size” aesthetic for lines was deprecated in ggplot2 3.4.0.

i Please use “linewidth”™ instead.

51

Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.

154

10

Value

1960 1965 1970 1975 1980
Time

Data Example 2

Below are the monthly counts (in thousands) of live births in the United States from 1948 to
1979. The first measurement is from January 1948 (¢t = 1), then February 1948 (¢t = 2), etc.

birth

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1948 295 286 300 278 272 268 308 321 313 308 291 296
1949 294 273 300 271 282 285 318 323 313 311 291 293
1950 297 273 294 259 276 294 316 325 315 312 292 301
1951 304 282 313 296 313 307 328 334 329 329 304 312
1952 312 300 317 292 300 311 345 350 344 336 315 323
1953 322 296 315 287 307 321 354 356 348 334 320 340
1954 332 302 324 305 318 329 359 363 359 352 335 342
1955 329 306 332 309 326 325 354 367 362 354 337 345
1956 339 325 345 309 315 334 370 383 375 370 344 355
1957 346 317 348 331 345 348 380 381 377 376 348 356
1958 344 320 347 326 343 338 361 368 378 374 347 358
1959 349 323 358 331 338 343 374 380 377 368 346 358
1960 338 329 347 327 335 336 370 399 385 368 351 362

02

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

358
346
355
336
315
301
295
277
284
300
299
278
259
261
264
257
274
262
277

333
318
314
326
292
281
265
260
273
275
284
261
244
238
243
242
256
251

356
359
343
337
322
302
300
282
286
301
306
275
267
257
259
266
276
285

335
328
322
316
291
291
271
274
284
292
290
256
255
246
250
241
259
260

348
333
336
331
302
297
291
288
294
298
292
270
260
254
262
252
273
272

class(birth) # ts stands

[1]

"tS"

346
329
327
331
310
291
290
287
288
306
285
264
253
255
253
250
272
265

for

374
366
362
359
330
311
310
308
315
326
295
265
267
273
280
281
297
296

386
373
366
350
335
319
318
312
322
332
306
284
277
276
288
278
296
312

384
367
361
356
333
317
310
306
317
329
317
284
277
286
270
286
290
289

time series

372
363
358
347
318
317
304
304
309
328
305
275
264
283
273
278
282
282

343
337
327
328
305
296
285
282
295
308
294
269
255
261
241
260
262
274

R class

plot(birth) # plot() is smart enough to make the

birth

250 300 350 400

346
346
330
336
313
307
288
305
306
324
287
275
260
276
266
272
275
281

right x-axis because birth is ts object

1950

1955

1960

1965

Time

1970

I I
1975 1980

Looking at the plot (time-ordered points are connected with a line segment), we note a positive
linear relationship from about 1948 to 1960 and a somewhat negative relationship between 1960

93

to 1968, with another slight increase and then a drop around 1972. This is not a polynomial
trend over time. We’ll need another approach!

Let’s also transform this dataset into a data frame to use ggplot2.

birthTS <- data.frame(
Year = floor(as.numeric(time(birth))), # time() works on ts objects
Month = as.numeric(cycle(birth)), # cycle() works on ts objects
Value = as.numeric(birth))

birthTS <- birthTS %>%
mutate (DecimalTime = Year + (Month-1)/12)

birthTS %>%
ggplot(aes(x = DecimalTime, y = Value)) +
geom_line() +
theme classic()

4001

350
D)
=)
T
>

300+

250

1950 1960 1970 1980
DecimalTime

4.1.1.2 Splines

Let’s try a regression basis spline, which is a smooth piecewise polynomial. This means we
break up the x-axis into intervals using knots or breakpoints and model a different polynomial
in each interval. In particular, let’s fit a quadratic polynomial with knots/breaks at 1965 and
1972.

o4

library(splines)

TrendSpline <- 1m(Value ~ bs(DecimalTime, degree = 2, knots = c(1965,1972)), data = birthTS)
summary (TrendSpline)

Call:
Im(formula = Value ~ bs(DecimalTime, degree = 2, knots = c(1965,
1972)), data = birthTS)

Residuals:
Min 1Q Median 3Q Max
-46.178 -12.789 -0.974 12.350 49.973

Coefficients:
Estimate Std. Error t value
(Intercept) 274.249 3.527 T77.762
bs(DecimalTime, degree = 2, knots = c(1965, 1972))1 119.206 6.817 17.486
bs(DecimalTime, degree = 2, knots = c(1965, 1972))2 25.459 3.961 6.428
bs(DecimalTime, degree = 2, knots = c(1965, 1972))3 -20.140 6.115 -3.294
bs(DecimalTime, degree = 2, knots = c(1965, 1972))4 7.062 6.006 1.176
Pr(>ltl)
(Intercept) < 2e-16 **x
bs(DecimalTime, degree = 2, knots = c(1965, 1972))1 < 2e-16 *x**
bs(DecimalTime, degree = 2, knots = c(1965, 1972))2 4.02e-10 *x*x
bs(DecimalTime, degree = 2, knots = c(1965, 1972))3 0.00108 *x*
bs(DecimalTime, degree = 2, knots = c(1965, 1972))4 0.24039

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

Residual standard error: 18.46 on 368 degrees of freedom
Multiple R-squared: 0.7287, Adjusted R-squared: 0.7258
F-statistic: 247.1 on 4 and 368 DF, p-value: < 2.2e-16

birthTS <- birthTS %>%
mutate(SplineTrend = predict(TrendSpline))

birthTS %>%
ggplot(aes(x = DecimalTime, y = Value)) +
geom_point() +
geom_line() +

95

geom_line(aes(x = DecimalTime, y = SplineTrend), color = 'blue', size = 1.5) +
theme_classic()

400 1

| [4
P 1
350 -) I I i'l l"'l

Value

8 i L | 1 '
3001 Lulf‘a) nh.

2501 h

1950 1960 1970 1980
DecimalTime

Then let’s see what is left over by plotting the residuals after removing the estimated trend. Is
the mean constant? If so, we can ensure we’ve estimated and removed the long-range trend.

Plotting residuals
birthTS %>%
ggplot(aes(x = DecimalTime, y = resid(TrendSpline))) +
geom_line() +
geom_smooth(se = FALSE) +
theme classic()

“geom_smooth() ~ using method = 'loess' and formula = 'y ~ x'

o6

50 1

N
(¢
1

o
1

I ~ MNJMN
|

1950 1960 1970 1980
DecimalTime

resid(TrendSpline)

|
N
(€1

1

_50 -

These parametric approaches give us an estimated function to plug in times and get a predicted
trend value, but they might not quite pick up the full trend.

What are alternative methods for estimating non-linear trends?

4.1.2 Nonparametric Approaches

Nonparametric methods for estimating a trend use algorithms (steps of a process) rather
than parametric functions (linear, polynomial, splines) with a finite number of parameters to
estimate.

4.1.2.1 Local Regression

Have you ever wondered how geom__smooth() estimates that blue smooth curve?

If you look at the documentation for geom_smooth(), you’ll see that it uses the loess()
function for smaller data sets. This trend estimation method is locally estimated scatterplot
smoothing, also called local regression.

The loess algorithm is to predict the outcome (estimate the trend) at a point on the x-axis,
x, following the steps below:

o Distance: calculate the distance between z, and each observed points z, d(x,z,) =
|z — .

o7

o Find Local Area: keep the closest s proportion of observed data points (s determined
by span parameter)

e Fit Model: fit a linear or quadratic regression model to the local area, weighting points
close to z higher (weighting determined by a chosen weighting kernel function)

o Predict: use that local model to predict the outcome at z,

That process is repeated for a sequence of values along the x-axis to make a plot like the one
below (blue: loess, purple: spline).

birthTS %>%
ggplot(aes(x = DecimalTime, y = Value)) +

geom_point() +

geom_line() +

geom_smooth(se = FALSE, color = 'blue') + # uses loess

geom_line(aes(x = DecimalTime, y = SplineTrend), color = 'purple', size = 1.5) +
theme classic()

“geom_smooth()~ using method = 'loess' and formula = 'y ~ x

400 1

|
LiAN
350+ ' i ;'I ;ij-~ﬁ1 b

Value

A8 180 I '
| I P

‘.ylr».].l‘.Ar 1
i |I,’ f' \|' [I

250 1 h

1950 1960 1970 1980
DecimalTime

We can also get the estimated trend with the loess () function.

o8

Running loess separately

LocalReg <- loess(Value ~ DecimalTime, data = birthTS, span

birthTS <- birthTS 7%>%
mutate (LoessTrend = predict(LocalReg))

birthTS %>7
ggplot(aes(x = DecimalTime, y = Value)) +
geom_point() +
geom_line() +
geom_line(aes(x = DecimalTime, y =
geom_line(aes(x = DecimalTime, y =

theme classic()

400 1

|
' r T
L & I I ;:.!\le
350 ! | Lo {

Value
- MY

LoessTrend), color
SplineTrend), color

= .75)

'blue', size =

'purple', size

250 1

3001 l1l1m i |

S———

" ".I -{—I
"ﬁu f"lhl
494

1950

1960

1970

DecimalTime

Plotting residuals
birthTS %>7

ggplot (aes(x = DecimalTime, y = resid(LocalReg))) +

geom_line() +
geom_smooth(se = FALSE) +
theme_classic()

“geom_smooth()~ using method = 'loess' and formula

99

1980

1.5) +

1.5) +

504

251

resid(LocalReg)
o
—
| |
—

_25 -

1950 1960 1970 1980
DecimalTime

4.1.2.2 Moving Average Filter

Local regression is an extension of a simple idea called a moving average filter (See Chatfield
and Xing 2019 for a brief introduction to moving averages and linear filtering in general).

Imagine a window that only shows you what is “local” or right in front of you, and we can
adjust the window width to include more or less data. In the illustration below, we have drawn
a 2-year window around January 1960. When considering information around Jan 1960, the
window limits our view to only those one year before and one year after (from Jan 1959-Jan

1961).

“geom_smooth() ~ using method = 'loess' and formula = 'y ~ x

60

400 1

350 1 }w“

300 1

Value

250 1

1950 1960 1970 1980
DecimalTime

For our circumstances, the “local” window will include an odd number of observations (number
of points = 1 + 2a for a given a value). Among that small local group of observations, we
take the average to estimate the mean at the center of those points (rather than fit a linear
regression model),

f(%) =(1+2a)7" Z Ytk

k=—a

“geom_smooth()~ using method = 'loess' and formula = 'y ~ x'

61

400 1

350 1 }w"

300 1

Value

250 1

1950 1960 1970 1980
DecimalTime

Then, we move the window and calculate the mean within that window. Continue until you
have a smooth curve estimate for each point in the time range of interest.

Box <- data.frame(x = 1965, y = 325, w = 2) #2-year window around 1980
Mean <- birthTS %>%
filter(DecimalTime < 1965 + 1 & DecimalTime > 1965 - 1) >%
summarize(M = mean(Value)) %>/, #Mean value of points in the window
mutate(x = 1965)

birthTS %>%
ggplot (aes(x = DecimalTime, y = Value)) +
geom_line() +

geom_smooth(se = FALSE) +
geom_tile(data = Box, aes(x = x,y=y,width=w),height = 100, fill=alpha("grey",0), colour =
geom_point(data = Mean, aes(x = x, y = M), colour = 'yellow', size = 2)+
theme classic()
“geom_smooth()~ using method = 'loess' and formula = 'y ~ x'

62

400 1

350 1

Value

300 1

250 1

1950 1960 1970 1980
DecimalTime

This method works well for windows of odd-numbered length (equal number of points around
the center), but it can be adjusted if you desire an even-numbered length window by adding
1/2 of the two extreme lags so that the middle value lines up with time ¢.

For the above monthly data example, we might want a 12-point moving average, so we would
have

f(:n) = 05y 6+ Yr 5+ Yrat ¥ st Yoty tUs+Y1 T Yot Yzt Ypa T Y5 +0.5y6
)=
12

fltr <- c(0.5, rep(1l, 11), 0.5)/12 # weights for the weighted average above

birthTrend <- stats::filter(birth, filter = fltr, method = 'convo', sides = 2) #use the ts ol

plot (birthTrend)

63

340
I

i}
C
5 _|
|_
o
s O -
£ ®
5
o
‘D_
~

I I I I I I I
1950 1955 1960 1965 1970 1975 1980

Time
Now, if we increase the window’s width (24-point moving window), you should see a smoother

curve.

7 05y ot Yt Y T Y+ Y 05y

fltr <- c(0.5, rep(1, 23), 0.5)/24 # weights for moving average
birthTrend <- stats::filter(birth, filter = fltr, method = 'convo', sides = 2) # use the ts
plot (birthTrend)

o
<t —
o™
©
< —
o
E o
ju QS
= m
o)
3
N I I I I [[[

1950 1955 1960 1965 1970 1975 1980

Time
What if we did a 5-point moving average instead of a 12 or 24-point moving average?
fltr <- rep(1l, 5)/5

birthTrend2 <- stats::filter(birth, filter = fltr, method = 'convo', sides = 2)
plot (birthTrend?2)

birthTrend2
260 300 340
|

I I I I I I I
1950 1955 1960 1965 1970 1975 1980

Time

We see the seasonality (repeating cycles) because the 5-point window averages about half of
the year’s data for each estimate. Thus, the highs and lows don’t balance each other out

You must be mindful of the window width for the moving average, depending on
the context of the data and the existing cycles in the data.

Let’s see what is left over. Is the mean of the residuals constant across time (indicating that
we have fully removed the trend)?

birthTS <- birthTS %>
mutate(Trend = birthTrend) %>Y%
mutate(Residual = Value - Trend)

birthTS %>7
ggplot(aes(x = DecimalTime, y = Residual)) +
geom_point() +
geom_smooth(se = FALSE) +
theme_classic()

Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.
“geom_smooth()~ using method = 'loess' and formula = 'y ~ x'

Warning: Removed 24 rows containing non-finite outside the scale range
(“stat_smooth()).

Warning: Removed 24 rows containing missing values or values outside the scale range
(“geom_point() 7).

65

251

Residual
[]

-254 Seo

1960 1980
DecimalTime

If we connect the points, we might see a cyclic pattern

birthTS %>%
ggplot(aes(x =
geom_line() +

geom_smooth(se = FALSE) +
theme_classic()

DecimalTime, y = Residual)) +

Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.

“geom_smooth() ~ using method = 'loess' and formula = 'y ~ x'

Warning: Removed 24 rows containing non-finite outside the scale range
(“stat_smooth()).

Warning: Removed 24 rows containing missing values or values outside the scale range
(“geom_line()).

66

25 4 \ n H

Residual

_25 -

1950 1960 1970 1980
DecimalTime

We still have to deal with seasonality (we’ll get there), but the moving average does a fairly
good job at removing the trend because we see that the trend of the residuals is 0 on average!

The moving average filter did a decent job of estimating the trend because of its flexibility, but

we can’t write down a function statement for that trend. This is the downside of nonparametric
methods.

4.1.2.3 Differencing to Remove Trend
If we don’t necessarily care about estimating the trend for prediction, we could use differenc-
ing to explicitly remove a trend.

We’ll talk about first and second-order differences, which are applicable if we have a linear or
quadratic trend.

Linear Trend - First Difference

If we have a linear trend such that Y, = b, + bt + ¢,, the difference between neighboring
outcomes (1 time unit apart) will essentially remove that trend.

Take the outcome at time ¢ and an outcome that lags behind one time unit:

Y, =Y, g = (bg+bit+e¢)—(bg+by(t—1)+¢_;)
:b0+b1t+6t_b0_blt+bl_et—l

=b +e—€

67

which is constant with respect to time, .
See below for a simulated example.
t <- 1:36

y <- ts(2 + 5%t + rnorm(36,sd = 10), frequency=12)
plot(y)

y
50 100

0
I

I I I I I I I
1.0 15 2.0 2.5 3.0 3.5 4.0

Time

plot(diff(y, lag = 1, differences = 1))

:1)

30

1, differences
10

o
H —]
I |
(@] _
3
- (@]
> o —
E I I I I I I I I
© 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

Quadratic Trend - Second Order Differences

If we have a quadratic relationship such that Y, = by + bt + byt? + ¢,, then taking the second
order difference between neighboring outcomes will remove that trend.

68

Take the outcome at time ¢ and an outcome that lags behind one time unit (first difference):
(Y = Yiy) = (bg + byt + byt +¢,) — (by + by (t — 1) +by(t — 1)* +¢,_y)
=by — b3 +2byt + € — €y

and thus, the second-order difference is the difference in the neighboring first differences:

Y=Y,)= (Y =Y,) = (b — b% +2byt + €, —€,q) — (by — b% +2by(t—1) + €1 —€_)
— 2b2 —I_ 6t - 2€t—1 —I_ 6t—2

which is constant with respect to time, t.

See below for an example of simulated data.

t <- 1:36

y <= ts(2 + 1.5%t + .3*%t"2 + rnorm(36,sd = 10), frequency=12)
plot(y)

300
I

0 100
I

I I I I I I I
1.0 15 2.0 2.5 3.0 3.5 4.0

Time

plot(diff(y, lag = 1, differences = 1)) #first difference

69

3
Il
5 9 -
c]
e o
£ N7
=5 _
— o -
I |
g 9 |
= |
= [[[[[[[
=
1.0 1.5 2.0 2.5 3.0 35 4.0
Time

plot(diff(y, lag = 1, differences = 2)) #second order difference

1, differences = 2)
20

I I I I I I
1.5 2.0 2.5 3.0 3.5 4.0

diff(y, lag

Time

Let’s see what we get when we use differencing on the real birth count data. It looks like the
first differences resulted in data with no overall trend despite the complex trend over time!

birthTS %>%
mutate (Diff = c(NA, diff(Value, lag = 1, differences = 1))) %>%
ggplot(aes(x = DecimalTime, y = Diff)) +
geom_point () +
geom_line() +
geom_hline(yintercept = 0) +

70

geom_smooth(se = FALSE) +
theme_classic()

“geom_smooth()~ using method = 'loess' and formula = 'y ~ x'

Warning: Removed 1 row containing non-finite outside the scale range
(“stat_smooth()).

Warning: Removed 1 row containing missing values or values outside the scale range
("geom_point () 7).

Warning: Removed 1 row containing missing values or values outside the scale range
("geom_line()).

251 l
!I\ !

I (I
uuu. "m 1'||H.ll UL.. il !'M il m'lll‘ |

Diff
o

lll‘ “ lll I N IHl} w “ i .‘ 'w ”\ Il ‘um ‘ i fu IN iHI
I

e

1950 1960 1970 1980
DecimalTime

_25 -

4.1.3 In Practice: Estimate vs. Remove

We have a few methods to estimate the trend,

1. Parametric Regression: Global Transformations (polynomials)
2. Parametric Regression: Spline basis
3. Nonparametric: Local Regression

71

4. Nonparametric: Moving Average Filter

Among the estimation methods, two are parametric in that we estimate slope parameters or
coefficients (regression techniques), and two are nonparametric in that we do not have any
parameters to estimate but rather focus on the whole function.

Things to consider when choosing an estimation method:

e How well does it approximate the true underlying trend? Does it systematically under-
or overestimate the trend for certain periods, or are the residuals on average zero across
time?

e Do you want to use past trends to predict the future? If so, you may want to consider
a parametric approach.

We have two approaches to removing the trend,

1. Estimate, then Residuals. Estimate the trend first, then subtract the trend from
observations to get residuals, y, — f(z,).
2. Difference. Skip the estimating and try first or second-order differencing of neighboring

observations.
Things to consider when choosing an approach for removing the trend:

o How well does it remove the underlying trend? Are the residuals (what is left over) close
to zero on average, or are there still long-range patterns in the data?

¢ Do you want to report on the estimated trend? Then estimate first.

o If your main goal is prediction, try differencing.

4.2 Seasonality

Once we’ve estimated and removed the trend, we may notice cyclic patterns left in the data.
Depending on the cyclic pattern’s form, we could use a few different techniques to model the
seasonal pattern.

First, let’s visualize the variability in the seasonality between different years for the birth data
set to see if there is a consistent cycle. To do so, we’ll work with the residuals after removing
the trend (for now, let’s use the moving average filter). Since we are interested in the cycles,
we want to know how the number of births varies across the months within a year.

Using the ggplot2 package, we can visualize this with geom_line() by plotting the residuals
by the month and having it color each line according to the year. To do this, it creates one line
per year. Interestingly, August and September have the highest residuals (approximately nine
months after winter break). In this case, we see that every year follows the same pattern.

72

birthTS %>%
ggplot(aes(x = Month, y = Residual, color = factor(Year))) +
geom_line() +
theme_classic()

Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.

Warning: Removed 24 rows containing missing values or values outside the scale range
("geom_line()).

— 1949 — 1965
— 1950 — 1966
— 1951 — 1967
— 1952 — 1968
— 1953 — 1969
© — 1954 — 1970
% — 1955 — 1971
o — 1956 — 1972
— 1957 — 1973
— 1958 — 1974
— 1959 — 1975
— 1960 — 1976
— 1961 — 1977
— 1962 — 1978
- 10RR —— 107Q

4.2.1 Parametric Approaches

Similar to the trend, we can use some of our parametric tools to model the cyclic patterns in
the data using our linear regression structures.

4.2.1.1 Indicator Variables

To estimate the seasonality that does not have a recognizable cyclic functional pattern (sine
or cosine curve), we can model each month (or appropriate time unit within a cycle) to have

73

its own average by including indicator variables for each month (or appropriate unit within a
cycle) in a linear regression model.

Like when we estimate the trend, we want to ensure that we have fully estimated the season-

ality, but check the residuals to ensure that there is no seasonality in what is left over.

birthTS <- birthTS %>Y%
mutate (Month = factor (Month))

SeasonModel <- 1m(Residual ~ Month, data = birthTS)
SeasonModel

Call:
Im(formula = Residual ~ Month, data = birthTS)

Coefficients:

(Intercept) Month?2 Month3 Month4 Monthb Month6
-4.231 -20.734 2.884 -17.412 -5.832 -4.814
Month7 Month8 Month9 Month10 Monthi11 Month12
20.738 27.650 24.434 18.024 -2.110 7.567

birthTS <- birthTS %>%
mutate(Season = predict(SeasonModel, newdata = data.frame(Month = birthTS$Month))) %>%
mutate(ResidualTS = Residual - Season)

Estimated Trend + Seasonality
birthTS %>%
ggplot(aes(x = DecimalTime, y = Value)) +
geom_point () +
geom_line() +
geom_line(aes(x = DecimalTime, y = Trend + Season), color = 'blue', size = 1.5) +
theme_classic()

Warning: Removed 24 rows containing missing values or values outside the scale range
("geom_line() ™).

74

400 1

350 1

Value

300 1

250 1

1950 1960 1970 1980
DecimalTime

Residuals

birthTS %>%
ggplot(aes(x = Month, y = ResidualTS)) +
geom_line(aes(group = factor(Year))) +
geom_smooth(se = FALSE) +
theme_classic()

Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.

“geom_smooth() ~ using method = 'loess' and formula = 'y ~ x'

Warning: Removed 24 rows containing non-finite outside the scale range
(“stat_smooth()).

Removed 24 rows containing missing values or values outside the scale range
(“geom_line()).

75

201

10
0

-104

Slrenpissy

_20 -

12

11

10

Month

4.2.1.2 Sine and Cosine Curves

While it isn’t the case for this birth data set, if the cyclic pattern is like a sine curve, we could

use a sine or cosine curve to model the relationship.

time <- seq(0,2xpi,length = 100)

tibble(

t = time,

sin(time),
cos(time)

sin

cos
) 1>

sin)) +

ggplot(aes(x = t, y
geom_line() +

= 'blue') +

cos) ,color

IXI,y = 'f(X)') +

geom_line(aes(x = t, y

labs(x

theme classic()

76

1.0

0.5 1

f(x)

0.01

—-0.51

-1.01

Some properties of sine and cosine curves:

e cos(0) =1, cos(m/2) =0, cos(m) = —1, cos(3m/2) =0 cos(2m) =1

o sin(0) =0, sin(7/2) = 1, sin(7w) = 0, sin(37/2) = —1 sin(27) =0

o The period (length of 1 full cycle) of a sine or cosine function is 27

e We can write a sine curve model as Asin(27ft + s) where A is the amplitude (peak
deviation from 0 instead of 1), f is the frequency (number of cycles that occur each unit
of time), ¢ is the time, and s is the shift in the x-axis.

Now, let’s try to apply it to the birth data.

SineSeason <- Im(Residual ~ sin(2+*pi*(DecimalTime)), data = birthTS) # frequency is one bec:

SineSeason

Call:
Im(formula = Residual ~ sin(2 * pi * (DecimalTime)), data = birthTS)

Coefficients:
(Intercept) sin(2 * pi * (DecimalTime))
-0.04286 -14.61751

7

Estimate Trend + Seasonality
birthTS %>%
mutate (SeasonSine
ggplot(aes(x = DecimalTime, y = Value)) +
geom_point() +
geom_line() +

= predict(SineSeason, newdata

geom_line(aes(x = DecimalTime, y = Trend + SeasonSine), color =

theme classic()

data.frame(DecimalTime = birthTS$Decima.

'blue') +

Warning: Removed 24 rows containing missing values or values outside the scale range

("geom_line()).

400 1

350 L %) I “'br|7
f TR | |‘\‘r

Value

I ““‘, 42 2hasy
300 l_ ! \.\ A

250 1

1960 1970

DecimalTime

1950

Residuals

birthTS %>7
mutate (ResidualTS2
ggplot(aes(x = Month, y = ResidualTS2)) +
geom_line(aes(group = factor(Year))) +
geom_smooth(se = FALSE) +
theme classic()

= Residual - predict(SineSeason, newdata =

1980

data.frame(DecimalTime = b

Don't know how to automatically pick scale for object of type <ts>. Defaulting

to continuous.
“geom_smooth() ~ using method = 'loess' and formula

78

'Y”X

Warning: Removed 24 rows containing non-finite outside the scale range
(“stat_smooth() 7).

Removed 24 rows containing missing values or values outside the scale range
("geom_line() 7).

201

ResidualTS2
<

_20 -

1 2 3 4 5 6 7 8 9 10 11 12
Month

Since we still see a pattern in these residuals, using a sine/cosine curve is not an accurate way
to estimate the cyclic pattern in this particular data set.

Data Example 3

Here is the daily temperature data in San Francisco in 2011. We only have one year, but we
can see that the cycle shape is closer to a cosine curve. The period, the length of one cycle,
of a cosine or sine curve is 2 * 7, so we need to adjust the period when we fit a cosine or sine
curve to our data. In the case below, the period is 365 since our time variable is DayinYear,
where 1 unit is one day in the year (Jan 1 is one and Dec 31 is 365).

load('./data/sfoWeather2011.RData')
sfoWeather <- sfoWeather 7>
mutate(DayinYear = 1:365)
sfoWeather %>%
ggplot(aes(x = DayinYear, y = High)) +
geom_line() +
theme classic()

79

901
801
N 701
2
I
60
50 4
0 100 200 300
DayinYear

CosSeason <- Im(High ~ cos(2*pi*(DayinYear-60)/365), data =

sfoWeather) # frequency is 1/365
CosSeason

Call:
Im(formula = High ~ cos(2 * pi * (DayinYear - 60)/365), data = sfoWeather)

Coefficients:

(Intercept) cos(2 * pi * (DayinYear - 60)/365)
64.249 -7.022

sfoWeather %>
mutate(Season = predict(CosSeason)) %>’
ggplot(aes(x = DayinYear, y = High)) +
geom_point () +

geom_line(aes(x = DayinYear, y = Season), color =

'blue', size = 1.5) +
theme _classic()

80

90 1

80 1

60 1

501
0 100 200 300
DayinYear
To recap:
For a cosine function,
Acos(Bx+C)+ D

: fo 2%
the period is B

the amplitude is A (the coefficient in our linear model), the phase shift is
C (included in our model above) and the vertical shift is D (intercept in our linear model).

4.2.2 Nonparametric Approaches

Similar to the trend, we could use local regression or moving averages to estimate the trend
and seasonality as long as we define the local area small enough to pick up the cycles.

The disadvantage of this approach is that we will not be able to use the estimate to make

predictions in the future because we do not learn general patterns of trend and seasonality.

4.2.2.1 Differencing to Remove Seasonality

Like removing a trend, we can use differencing to remove seasonality if we don’t need to
estimate it. Rather than a difference between neighboring observations, we will take differences

between observations that are approximately one period apart. The period, length of one cycle,

81

is k observations such that y, is similar to y,_, and y,_o;, then we’ll take differences between
observations that are k observations apart.

For example, if you have monthly data and an annual cycle, you’d want to take differences
between observations that are 12 lags apart (12 months apart). See the simulated monthly
data below.

t <- 1:48
y <= ts(2 + 20*sin(2xpi*t/12) + rnorm(48,sd = 5), frequency=12)
plot(y)

20

I I I I I
1 2 3 4 5

Time

plot(diff(y, lag = 12, differences = 1)) #first order difference of lag 12

:]_)

12, differences
5 15
|

-10
I

diff(y, lag

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time

82

Let’s try this approach with the birth data since we saw annual seasonality by month. First,
we take first differences of neighboring values to remove the trend. Then we’ll take the first
differences of lag 12 to remove the seasonality. No obvious trends or seasonality remain in the
data, and it is centered around 0.

plot(diff (diff (birth,differences = 1), lag = 12, differences = 1))

<
<

12, difference

1), lag
10

-10

I I I I I I I
1950 1955 1960 1965 1970 1975 1980

-30

Time

f(diff(birth, differences

What is left over, the random errors, are what we need to worry about now.

We'll first talk about how we might model the errors from time series data and then talk about
translating these ideas to other types of correlated data.

83

5 Time Series Data

We will start with univariate time series, which is defined as a sequence of measurements
of the same characteristic collected over time at regular intervals. We’ll notate this time series
as

Yy, fort =1,2,....n

where ¢ indexes time in a chosen unit.

For example, if data are collected yearly, ¢ = 1 indicates the first year, etc. If data are collected
every day, then ¢t = 1 indicates the first day of data collection. In other settings, we may have
monthly or hourly measurements such that ¢ indices months or hours from the beginning of
the study period.

There are two main approaches to analyzing time series data: time-domain and frequency-
domain analysis. In this class, we’ll focus on the time-domain analysis. For frequency domain
approaches, check out the Other Time Series References.

5.1 R: Time Series Objects

As you’ve seen, R has a special format (an object class) for time series data called a ts object.
If the data are not already in that format, you can create a ts object with the ts() function.
Besides the data, it requires two pieces of information.

The first is frequency. The name is a bit of a misnomer because it does not refer to the
number of cycles per unit of time but rather the number of observations/samples per cycle.

We typically work with one day or one year as the cycle. So, if the data were collected each hour
of the day, then frequency = 24. If the data is collected annually, frequency = 1; quarterly
data should have frequency = 4; monthly data should have frequency = 12; weekly data
should have frequency = 52.

The second piece of information is start, and it specifies the time of the first observation in
terms of (cycle, frequency). In most use cases, it is (day, hour), (year, month), (year, quarter),
etc. So, for example, if the data were collected monthly beginning in November of 1969, then
frequency = 12 and start = c(1969, 11). If the data were collected annually, you specify

84

start as a scalar (e.g., start = 1991) and omit frequency (i.e., R will set frequency = 1 by
default).

This is a useful format for us because the plot.ts() or plot(ts()) functions will automat-
ically correctly label the x-axis according to time. Additionally, there are special functions
that work on ts objects such as decompose() that visualizes the basic decomposition of the
series into trend, season, and error.

If you have multiple characteristics or variables measured over time, we could combine them
in one ts object by considering the intersection (overlapping periods) with ts.intersect()
or the union (all times) of the two time series with ts.union().

As you’ve seen above, it may also be useful to have data in a data.frame() format instead
of a ts object if you want to use ggplot() or 1m(). You should be familiar with both data
formats to go back and forth as necessary.

5.2 ACF: Autocorrelation Function

As we discussed earlier, the key feature of correlated data is the covariance and correlation of
the data. We have decomposed the data for time series into trend, seasonality, and noise or
error. We will now work to model the dependence in the errors.

Remember: For a stationary random process, Y, (constant mean, constant variance), the
autocovariance function is only dependent on the different in time, which we will refer to as
the lag h, so

E(h) = Cov(Yy, Yiipn) = E[(Y, — 1) (Y n) — Hesin))]
for any time t.

Most time series are not stationary because they do not have a constant mean across time.
By removing the trend and seasonality, we attempt to get errors (also called residuals) with a
constant mean around 0. We’ll discuss the constant variance assumption later.

If we assume that the residuals, vy, ...,y,,, are generated from a stationary process, we can
estimate the autocovariance function with the sample autocovariance function (ACVF),

n—|h|

> W= D Wiy —)

1
c, = —
h

n 4=

where gy is the sample mean, averaged across time, because we are assuming the mean is
constant.

There are a few useful properties of the ACVF function. For any sequence of observations,
yla L] yn7

85

].. Ch :C_h
2. ¢y >0 and |¢;| < ¢y

The sample autocorrelation function (ACF) is the covariance divided by the variance,
also known as the covariance for lag 0,

Cc
Thzif0r00>0
€o

There are a few useful properties of the ACF function. For any sequence of observations,
y17 EAS) yn7

1. Th :Tfh
2. rg=1and |r,| <1

We expect a fairly high correlation between observations with large lags for a non-stationary
series with a trend and seasonality. This high correlation pattern typically indicates that you
need to deal with trend and seasonality.

acf(birth) # acf works well on ts objects (lag 1.0 is one year since it knows that one year |

Series birth
0
Q
. |
@) <
"o
o FHAAA A NN
=
I I I I I
0.0 0.5 1.0 1.5 2.0
Lag

e Sample ACF for Trend: Very slow decay to zero
e Sample ACF for Trend + Seasonality: Very slow decay to zero + Periodic

We would like to see the autocorrelation of the random errors after removing the trend and
the seasonality. Let’s look at the sample autocorrelation of the residuals from the model with
a moving average filter estimated trend and monthly averages to account for seasonality.

86

birthTS <- data.frame(
Year = floor(as.numeric(time(birth))), # time() works on ts objects
Month = as.numeric(cycle(birth)), # cycle() works on ts objects
Value = as.numeric(birth)) %>%
mutate(DecimalTime = Year + (Month-1)/12)

fltr <- c(0.5, rep(1, 23), 0.5)/24 # weights for moving average
birthTrend <- stats::filter(birth, filter = fltr, method = 'convo', sides = 2) # use the ts

birthTS <- birthTS %>
mutate (Trend = birthTrend) %>Y%
mutate(Residual = Value - Trend)

birthTS %>%
dplyr: :select(Residual) %>%
dplyr::filter(complete.cases(.)) %>%
acf() # if the data is not a ts object, lags will be in terms of the index

Residual

1.0

0.5

ACF

-0.5 0.0

Lag

The autocorrelation has to be 1 for lag 0 because r, = ¢y/c, = 1. Note that the lags are in
terms of months here because we did not specify a ts() object. We see the autocorrelation
slowly decreasing to zero.

What about the ACF of birth data after differencing?

87

acf(diff(birth, 1)) # one difference to remove trend

Series diff(birth, 1)

1.0

ACF
0.6

0

Lag
e Sample ACF for Seasonality: Periodic

acf(diff(diff(birth,1), lag = 12, 1)) # differences to remove trend and seasonality

Series diff(diff(birth, 1), lag = 12, 1)

o |
o
<
& o]
< —
o B ey D A R I T
o [__|- Y L __. . 1.
<«
O‘ —
' | | | | |
0.0 0.5 1.0 15 2.0
Lag

Note that the lags here are in terms of years (Lag = 1 on the plot refers to h = 12) because
the data is saved as a ts object. In the first plot (after only first differencing), we see an

88

autocorrelation of about 0.5 for observations one year apart. This suggests that there may
still be some seasonality to be accounted for. In the second plot, after we also did seasonal
differencing for lag = 12, that decreases a bit (and becomes a bit negative).

Now, do you notice the blue, dashed horizontal lines?

These blue horizontal lines are guide lines for us. If the random process is white noise such
that the observations are independent and identically distributed with a constant mean (of
0) and constant variance o2, we'd expected the sample autocorrelation to be within these
dashed horizontal lines (£1.96/+/n) roughly 95% of the time. So if the random process were
independent white noise, we’'d expect 95% of the ACF estimates for h # 0 to be within the
blue lines with no systematic pattern.

See an example of Gaussian white noise below and its sample autocorrelation function.

y <= ts(rnorm(500))
plot(y)

0O 1 2 3
I

-2

0 100 200 300 400 500
Time

act (y)

89

Series y

1.0

ACF
0.6
I

0.2

Lag

e Sample ACF for White Noise: Zero except at lag 0

Many stationary time series have recognizable ACF patterns. We’ll get familiar with those in
a moment.

However, most time series we encounter in practice are not stationary. Thus, our first step
will always be to deal with the trend and seasonality. Then we can model the (hopefully
stationary) residuals with a stationary model.

5.3 Modeling the Errors

Up to this point, we have decomposed our time series into a trend component, a seasonal
component, and a random component,

Vi=flz)+ slz) + ¢
— —_— -
trend seasonality =~ noise

With observed data, we can work with the residuals after removing the trend and seasonality,

er =y — flay) — S(zy)
trend seasonality

which is approximately the true error process,

90

¢ =Y, — flz,)— s(x,)
trend seasonality

For the following time series models (AR, MA, and ARMA), we will use Y, to represent the
random variable for the residuals, e,.

In the next five sections, we’ll discuss the theory of these three models. To see a real data
example and the R code to fit the models, go to the Real Data Example section.

5.4 Autoregressive Models

The first model we will consider for a stationary process is an autoregressive model, which
involves regressing current observations on values in the past. So this model regresses on itself
(the ‘auto’ part of ‘autoregressive’).

5.4.1 AR(1) Model

One simple model for correlated errors is an autoregressive order 1 or AR(1) model. The
model is stated

Y,=0+¢,Y, + W,

where W, YN (0,02) is independent Gaussian white noise with mean 0 and constant vari-
ance, 02. This model is weakly stationary if |¢,| < 1.

Note: We will often think of 6 = 0 because our error process is often on average 0.
Properties

Under this model, the expected value (mean) of Y, is

1)
EY)=u=
(V) = n 1— o,
and the variance is
2
o
Var(Y,) = —“—

The correlation between observations h lags (time periods) apart is

91

Ph = ¢]f
Derivations for these properties are available in the Appendix at the end of this chapter.
o Sample ACF for AR(1): Decays to zero exponentially

Simulated Data Example

We will generate data from an AR(1) model with ¢; = 0.64. For a positive ¢,, the autocorre-
lation exponentially decreases to 0 as the lag increases, p;, = (0.64)%.

Simulate an ar(1l) process
x = 0.05 + 0.64*x(t-1) + e
Create the vector x

x <= vector(length=1000)

#simulate the white noise errors
e <- rnorm(1000)

#Set the coefficient
beta <- 0.64

set an initial value
x[1] <- 0.055

#Fill the vector x
for(i in 2:length(x))
{
x[i] <- 0.05 + betaxx[i-1] + e[i]
+
x <- ts(x)
plot (x)

92

< —
N —
X
o —
N
|
I I I I I I
0 200 400 600 800 1000
Time
acf (x)
Series X
©
g
ts —
< I A
Q i j'4'FI'rI'IW'T'FI'IW'T'CT'(T'FW'T'II'II'IW'T'
O oo
I I I I I I I
0 5 10 15 20 25 30
Lag
Now, we’ll try ¢; = —0.8. For a negative ¢,, the autocorrelation exponentially decreases to

0 as the lag increases, but the signs of the autocorrelation alternate between positive and
negative (p;, = (—0.8)").

Simulate an ar(1l) process
x = 0.05 - 0.8*x(t-1) + e
Create the vector x

x <= vector(length=1000)

93

#simulate the white noise errors
e <- rnorm(1000)

#Set the coefficient
beta <- -0.8

set an initial value
x[1] <- 0.05

#Fill the vector x
for(i in 2:length(x))
{
x[4i] <- 0.05 + betaxx[i-1] + e[i]
}
x <- ts(x)
plot(x)

0 200 400 600 800

Time

acf (x)

94

Series X

05 1.0

ACF
0.0

-0.5
I

Lag

Remember that |¢;| < 1 in order for an AR(1) process to be stationary (constant mean,
constant variance, autocovariance only depends on lags).

5.4.2 Random Walk

If $ = 1 and § = 0 (a simplifying assumption), the AR(1) model becomes a well-known
process called a random walk. The model for a random walk is

Y, =Y, + W,
where W, b N(0,02).

If we start with ¢ = 1, then we start with random white noise,

Y1 :W1

The next observation is the past observation plus noise,

Y2:Y1+W2:W1+W2

The next observation is the past observation plus noise,

Y3:Y2+W3:(W1+W2>+W3

95

And so forth,

Yn:Yn—l+Wn:Zn:Wi

i—1
So a random walk is the sum of random white noise random variables.
Properties
This random walk process is NOT weakly stationary because the variance is not constant as

it is a function of time, ¢,

t

Var(Y,) = Var(z W;) = Z Var(W,) = to?,

i=1
Simulated Data Example

When we generate many random walks, we’ll notice greater potential variability in values later
in time. Additionally, you’ll see high autocorrelation at higher lags, indicating a high range of
dependence. Two observations that are far in observation time are still highly correlated.

Simulate one random walk process
#x =x(t-1) + e

#simulate the white noise errors
e <- rnorm(1000)

cumulative sum based on recursive process above
X <- cumsum(e)

x <- ts(x)
plot (x)

96

0
I

-10

=20
I

-30
I

I I I I I I
0 200 400 600 800 1000

Time
acf (x)

Series x

0.8

ACF
0.4

Lag

Simulate many random walk processes
plot(1:1000,rep(1,1000),type='n',ylim=c(-100,100),xlab="'t"',ylab="'x")
for(i in 1:100){

e <- rnorm(1000)

x <- cumsum(e)

x <- ts(x)

lines(ts(x))
+

97

50 100

X
0
I

-100

If we were to take a first-order difference of a random walk, Y, — Y, ;, we could remove the
trend and end up with independent white noise.

Y,~ Y, =W,

acf(diff(x, lag = 1, difference = 1))

Series diff(x, lag = 1, difference = 1)

ACF
0.4

0.0

98

5.4.3 AR(p) Model

We could generalize the idea of an AR(1) model to allow an observation to be dependent on
the past p previous observations. A autoregression process of order p is modeled as

Yi=0+¢,Y 1+ Y, o+ +0,Y, ,+ W,

where {W,} is independent Gaussian white noise, W, YN (0,02). We will typically let 6 = 0,
assuming we have removed the trend and seasonality before applying this model.

Properties

We'll look at the expected value, variance, and covariance in the AR(p) as MA(co) section after
discussing moving average models. We’ll also discuss when the AR(p) model is stationary. I
know you can’t wait!

Simulated Data Example

Let’s see a few simulated examples and look at the autocorrelation functions.

set.seed(123)
the 4 AR coefficients
ARp <- ¢c(0.7, 0.2, -0.1, -0.3)
empty list for storing models
AR .mods <- 1list()
loop over orders of p
for (p in 1:4) {
assume SD=1, so not spectified
AR.mods[[p]] <- arima.sim(n = 10000, list(ar = ARp[1:p]))

set up plot region

par(mfrow = c(4, 2))

loop over orders of p

for (p in 1:4) {
plot.ts(AR.mods[[p]][1:50], ylab = paste("AR(", p, ")", sep = ""))
acf(AR.mods[[p]l], lag.max = 12,main=paste("AR(", p, ")", sep = ""))

99

AR(1)

AR(2)

AR(3)

AR(4)

AR(1)

ACF

1.0

08

0.6

0.4

0.2

o o

e
5]
|
S
@ |
8
s |
S
a |
3

ACF

1.0

08

0.6

0.4

0.2

o o

e
1)
|
S
@ |
8
s |
S
a |
3

ACF

1.0

08

0.6

0.4

0.2

o o

=
1S
|
S
@ |
8
s |
S
a |
3

-0.5

o o

=
1S
|
S
w |
8
s |
S
a |
3

100

o Sample ACF for AR(p): Decay to zero

5.5 Moving Average Models

In contrast to the autoregressive model, we will consider a model that considers the current
outcome value to be a function of the current and past noise (rather than the past outcomes).
This is a subtle difference but you’ll see that a moving average (MA) model is very different
than an AR model, but we’ll show how they are connected.

Note: This is different from the moving average filter that we used to estimate the trend.

5.5.1 MA(1) Model

A moving average process of order 1 or MA(1) model is a weighted sum of a current
random error plus the most recent error, and can be written as

Yt :5+Wt+91Wt—1

where {W,} is independent Gaussian white noise, W, WN (0,02).
Like AR models, we often let 6 = 0.
Properties

Unlike AR(1) processes, MA(1) processes are always weakly stationary. We see the variance
is constant (not a function of time),

Var(Y,) = Var(W, + 0,W,_,) = o2(1 + 63)

Let’s look at the autocorrelation function of an MA(1) process.

To derive the autocorrelation function, let’s start with the covariance at lag 1. Plug in the
model for Y, and Y,_; and use the properties to simplify the expression,

Yy (1) =Cou(Y,Y, ;) =Cov(W,+ 60, W, {, W,y +60,W,_5)
= Cov(Wy, W,_1) + Cov(Wy, 0, W, _5) + Cov(6,W,_y, W,_1) + Cov(0,W,_1, 6, W, _5)
=0+0+60,Cov(W,_,W,_{)+0
=0,Var(W,_,)
=0,Var(W,) = 0,02

101

because $ W_ t$’s are independent of each other.

For larger lags k > 1,

Yy (k) = Cov(Y,, Y,) = Cov(W, + 0, W, 1, W, o+ O, W, 1)
= Cov(Wy, W,_y) + Cov(W,,0,W,_;_1) + Cov(0,W,_1, W,_.) + Cov(0,W,_1,0,W,_;_1)

=0ifk>1
because W,’s are independent of each other.

Now, the correlation is derived as a function of the covariance divided by the variance (which
we found above),

oy = Cov(Y, Y1) _ Ey(1) 0,07, 0,
L=

Var(Y,) — Var(Y,) oi(1+6]) (1+67)

and

_ Cov(Yy, Y,) Ey(k)
Pk = =
Var(Y,) Var(Y,)

=0ifk>1

So the autocorrelation function is non-zero at lag 1 for an MA(1) process and zero otherwise.
Keep this in mind as we look at sample ACF functions.

o Sample ACF for MA(1): Zero for lags > 1

Simulated Data Example

Simulate a MAl process
x = e + thetal e(t-1)

Create the vector x

x <- vector(length=1000)
thetal <- 0.5

#simulate the white noise errors
e <- rnorm(1000)

x[1] <- e[1]
#Fill the vector x

for(i in 2:length(x))
{

102

x[i] <- e[i] + thetalxe[i-1]

}
x <- ts(x)
plot (x)
m p—
H p—
< _
- _|
|
™ _|
|
| | | | | |
0 200 400 600 800 1000
Time
acf (x)
Series X
© _|
o
t'; _
< 3 A
o il i ettt Bl ittt il ettt teel falriadalaiuiudefuli
o oo T T T T T
| | | | | | |
0 5 10 15 20 25 30
Lag

Notice how the autocorrelation = 1 at lag 0 and then around 0.4 at lag 1. The autocorrelation
estimate is in between the blue lines for the other lags, so they are practically zero.

Invertibility

103

No restrictions on 6, are needed for an MA(1) process to be stationary. However, imposing
restrictions on 6, is generally desirable to ensure the MA process is invertible.

For an MA process to be invertible, we must be able to write it as an AR(oco) process that
converges. We’ll talk more about this soon.

We want to restrict ourselves to only invertible processes because of the non-uniqueness of the
ACF. Let’s imagine these two processes,

A: Y;:Wt—i_eth—l
1

B: Y;:Wt—i_
01

Wtfl

Let’s show that they have the same ACF. We can use our derivations about the MA(1) process.
For process B,

1/6, 1 1 1 62 0,

=018 " 0,1+1/60) 0, 1 B+

1

which is the same autocorrelation as process A.

Now, let’s invert process A by rewriting it for W, as a function of Y},

Wy=Y,—0,W,,

and now let’s plug in the model for W,_,

Wt = Y; - 91(1@71 - 91Wt71> = Yt - 91Yt4 - G%Wtq

and if you keep going, you get an infinite sum,

Wt = Yt - 91(5/;71 - 91Wt71) = Yt - 91}/;71 - G%YLQ -

or equivalently, an autoregressive model of order oo that is stationary if |6,| < 1,

Y, =W +6,Y,y +01Y; o+
Additionally, this infinite sum only converges to a finite value when |0,| < 1.

If you invert the second process (process B), this infinite sum will not converge if 0| < 1,

Wy =Y, —1/6,Y, , —1/07Y, 5 — -

104

Thus, the first process is invertible, and the second is not if |#;] < 1. When we can invert
the process, notice that we have written an MA(1) process as an autoregressive process of
infinite order.

5.5.2 MA(q) Model

A moving average process of order q or MA(q) model is a weighted sum of a current
random error plus ¢ most recent errors, and can be written as

}/; = (5 + Wt + 91Wt,1 + QQWt72 + Hthfq
where {W,} is independent Gaussian white noise, W, YN (0,02). Similar to AR models, we
will often let 6 = 0.
Properties

As with MA(1), we see the variance is constant (and not a function of time),

q
Var(Y;) = Var(W, + 0,W,_y + 0,W, 5 +0,W,) =o02(1+ > 6?)

i=1

More generally for a MA(q) process, the autocorrelation is non-zero for the first q lags and
zero for lags > q.

We can show this for an MA(2) process and higher-order models using the same techniques as
before.

o Sample ACF for MA(q): Zero for lags > q

Simulated Data Example

Simulate a MA2 process

x = e + thetal e(t-1) + theta2 e(t-2)
Create the vector x

x <= vector(length=1000)

thetal <- 0.5

theta2 <- -0.2

#simulate the white noise errors
e <- rnorm(1000)

x[1] <= e[1]
x[2] <- e[2]

105

#Fill the vector x
for(i in 3:length(x))

{
x[i] <- e[i] + thetalx*e[i-1] + theta2*e[i-2]
}
x <- ts(x)
plot(x)
m —
H p—
X _
- _|
|
o _|
|
[[[[[[
0 200 400 600 800 1000
Time
acf (%)
Series X
o
= A
© |
L o
QO _
<
o\
S
T "'I'I"'I'I'"I"'T'."""T'u"'l"'u"u """ I"'I'""
N [f '''''''''''''''''''''''''''''''''
Q | | | | | | |
0 5 10 15 20 25 30
Lag

106

Notice at lag = 0, the autocorrelation is 1, at lag = 1 and 2, the autocorrelation is non-zero
for an MA(2) model, and for all other lags, the autocorrelation is practically zero (within blue
lines).

Invertibility

To check the invertibility of an MA(q) process, we need to learn about the backward shift
operator, denoted B, which is defined as

BY, =Y, ,

The backshift operator is notation that allows us to simplify how we write down the MA(q)
model.

The MA(q) model can be written as

Y, = (0 +0,B+ - +0,BYW,
= 0(B)W,
where 6(B) is a polynomial of order ¢ in terms of B. It can be shown that an MA(q) process
is invertible if the roots of the equation,
0(B) = (0y+0,B+--+0,B7) =0
all lie outside the unit circle, where B is regarded as a complex variable and not an operator.
Remember: the roots are the values of B in which 6(B) = 0.

For example, a MA(1) process has a polynomial §(B) = 1+ 6, B with roots B = —1/6,. This
root is a real number, and it is outside the unit circle (> |1]) as long as |#;| < 1. Rarely
will you have to check this, but the software we will use restricts the values of 6; so that the
process is invertible.

5.6 AR(p) as MA(0)

Now, we already see that we can write an MA model as an AR(o0) model. Let’s write an AR
model as an MA(oo0) model. This is the main connection between the two models.

107

5.6.1 AR(1) Model

Let’s return to an AR(1) model momentarily.

Yt = ¢1Yt—1 + Wt

By successive substitution, we can rewrite this model is an infinite-order MA model,

Y, =01(0)Y, o+ W,)+ W, =1V, o+, W, + W,
= 1Y, s+ W, o) + W, 1 + W, =Y, 5+ dITW, 5+ oW, 1 + W,
=W+ oW, +OW, o+ G3W, 54 -

This can also be shown with a backward shift operator,

1—¢B)Y, =W, = Y, = (1—-¢,B)"'W,
Y, =(1—¢,B)"'W,
= (1+ ¢ B+ ¢1B* +)W,
This converges when |¢;| < 1 by the infinite sum rule that Zzl ri=(1—-r)"tif|r] <1

With this format, it is clear that for an AR(1) process,

E(Y,) = EW, + W, 1 + ¢iW, 5+) =0

2

Var(Y,) = Var(W, + oW,y + ¢iW_ +) = 05 (1 + ¢F + ¢ +) = 10711;52 if o] <1
-
5.6.2 AR(p) Model
A general AR(p) model can be written with a backward shift operator,
(1 - ¢1B - 45232 - ¢po)Y;t =W, = Y, = (1 - ¢1B - 45232 - ¢po>_1Wt
where (1— ¢ B—¢yB*> —--—¢,B?)"! = (1+ 3, B+ ;B 4) (this mathematical statement

can be proved, but we won’t get into that in this course). So,

Y, =1+ 5B+ BB +)W,

108

With this format, it is clear that for an AR(p) process,

E(Y,) =0

Var(Y,) = 02(1+ % + 83 + ---) which will be finite if Z 2 converges

The autocovariance function is given by

Sy (k) =02 BB, where B =1

=0

which will converge if)" |5;| converges. But, figuring out what the beta,’s should be is hard.
There is an easier way to do this.

5.6.3 AR(p) Estimation: Yule-Walker Equations

Let’s go back to the original model statement (but let’s assume ¢ = 0),

Y, =01 Y 1+ Y, o+ + Y, , + W,

Multiply that model through by Y,_,,
Y, p=01Y 1Yy + Y oY, o+ +0,Y, Y, + WY,
Then take the expectation and divide it by the variance of Y;, Var(Y;) (assuming it is finite)

E(Yty;ffk):(élE(thfIY;—k) ¢2E(Y1572Y;7k:>+“_ gpr(Yt,th,k) EWY,)
Var(Y,) Var(Y,) Var(Y,) Var(Y,) Var(Y;)

Assuming the process is stationary, this simplifies to

Pr = P1Pp—1+ Papp_o + -+ Qppp_, for k=1,2,...

If you plug in estimates of the autocorrelation function for k& = 1,...,p, and recognize that
p(—k) = p(k), and solve for these equations, you'll get the estimates of ¢,,...,¢,. This is a
well-posed problem that can be done with matrix notation.

In practice, you will have the computer estimate these models for you. Keep reading for R
examples.

o Sample ACF for AR(p): Decay to zero

109

5.7 ARMA Models

You might wonder why it is necessary to know the theoretical properties of the AR and MA
models (expected value, variance, covariance, correlation).

This probability theory is important because it will help you choose a model for time series
data when you need to choose between the models:

o Autoregressive model of order p AR(p),

o Moving Average model of order ¢ MA(q),

e a combination of those two models, called an ARMA(p, q) and
o the values of p and/or g.

An ARMA(p, g) model is written as

Y, =0+0 Y, 1+ Y, o+ +0,Y, , + W, + 0, W,y +0,W, o +0W,_,

where the white noise W, YN (0,02).

Equivalently, using the backshift operator, an ARMA model can be written as

O(B)Y, = 5+ 6(B)W,

where

¢(B) =1- ¢1B - ¢2B2 - ¢po

and

0(B)=1+0,B+0,B*>+ -+ 0,B"

In order for the ARMA (p,q) model

o to be a weakly stationary process, the roots of ¢(B) must be outside the unit circle
« to be invertible, the roots of #(B) must be outside the unit circle

In practice, the computer will restrict the modeling fitting to ARMA weakly stationary and
invertible models. But it is important to understand this restriction if you encounter any R
errors.

This combined model is useful because you can adequately model a random process with an
ARMA model with fewer parameters (phi’s or €’s) than a pure AR or pure MA process by
itself.

Before we go any further, we need one more tool called the partial autocorrelation function.

110

5.7.0.1 Partial Autocorrelation

The partial autocorrelation function (PACF) measures the linear correlation of an
observed value {Y,} and a lagged version of itself {Y, ,} with the linear dependence of
{Yi1,,Yy_(4—1)} removed. In other words, the PACF is the correlation between two
observations in time k lags apart after accounting for shorter lags.

{@m,n_o if k=1
E— N\~ .
COT(YIHY;‘/—ICIY;—D “‘7YI‘J—(k—1)> lf k > 1

Note that the partial autocorrelation at lag 1 will be the same as the autocorrelation at lag 1.
For the other lags, the partial autocorrelation measures the dependence after accounting for
the relationships with observations closer in time.

Connection to Stat 155: When we interpret the slope coefficients keeping all
other variables fixed, we are interpreting a relationship accounting for those other
variables.

Similar to the ACF plots, the dashed horizontal lines indicate plausible values if the random
process were independent white noise.

Let’s look at simulated independent Gaussian white noise.

x <- ts(rnorm(1000))
plot(x)

™

N_

I I I I I I
0 200 400 600 800 1000

Time

Then, the ACF and the PACF (Partial ACF) functions.

111

acf2(x)

Series:; X

ACF
0

PACF

LAG

The partial autocorrelation is important to detect the value of p in an AR(p) model because
it has a particular signifying pattern.

For an AR model, the theoretical PACF should be zero past the order of the model. Put another
way, the number of non-zero partial autocorrelations gives the order of the AR model, the value

of p.
o Sample PACF for AR(p): Zero for lags > p
Simulated Data Examples

Let’s see this in action.

o Sample ACF for AR(p): Decays to zero
o Sample PACF for AR(p): Zero for lags > p

Play around with the values of the phi’s and the standard deviation to get a feel for an AR
model and its associated ACF and PACF.

x <- arima.sim(n = 1000, list(ar = c(.7, -.3, .5)), sd = 2) #AR(3) model
plot (x)

112

o _]
—
Lo —]
X
n _|
|
I I I I I I
0 200 400 600 800 1000
Time
acf2(x)
Series: x
©
LL O
Ul
Q:__ i i . \‘J‘\‘J|||‘ ||"l||'+‘|||"|'I'I'T'|','."."
o _I _____________ - —_— —
0 10 2o 30 40
LAG
0 |
o
L
Q .
T .
C)__" i T e | i mai S I"",""'F'.'_"'_"_"""""T """"
o o L [J - |
0 10 20 30 40
LAG

X <- arima.sim(n = 1000, list(ar = c(.8, -.4)), sd = 1) #AR(2) model
plot(x)

113

< —
N p—
X o —
o
|
<
: | | | | | |
0 200 400 600 800 1000
Time
acf2(x)
Series: x
s o {
o I i i — | I S S T T - - ---=-=-== | B T T R B i
< ____j_|_|_1_______l___l_LJ_______l_J ______ l:i__l_f.l_| ______________
<
?_I 1 v 1 1 1
0 10 20 30 40
LAG
L \
% o-ZZ_'IZZZ'ZZZZZZZZZ.ZZZZZZZZZ-ZZZZZZZZ'ZEZZ-IZZZZZ]ZZZZZZZZZZZ
<1 |
?_I v 1 1 1 1
0 10 20 30 40
LAG

o Sample ACF for MA(q): Zero for lags > q
o Sample PACF for MA(q): Decays to zero

Play around with the values of the theta’s and the standard deviation to get a feel for an MA
model and its associated ACF and PACF.

114

x <- arima.sim(n = 1000, list(ma = c(.7, -.2, .8)), sd = 1) #MA(3) model
plot(x)

<t —
N p—
= © T
N
|
(o]
[I I I I I I
0 200 400 600 800 1000
Time
acf2(x)
Series: x
b 2 ‘
o
5 o
< H:"l‘I"."'.""'"""'l""""""""'_ """"""""""
._________'____'___'_____________'__'_I_|___I_L___'____'___'_'_Ll__l_'____
? 1 1 1 1 1
0 10 20 30 40
LAG
0
O_
LL o~
2 o l ‘
o H'__ ‘|"'i" "."I'"'.'T """"]'-"I'['"f'l'I'I'.'"I"j"l'"n""l"
i pAA--- e b R R
0 10 20 30 40
LAG

x <- arima.sim(n = 1000, list(ma = c(.8, -.4)), sd = 1) #MA(2) model
plot(x)

115

< —
N —
x o —
N
|
T]
[[[[[[
0 200 400 600 800 1000
Time
acf2(x)

Series: X
-——
2 O:___1 ______ e e et e e I g

(‘q_
?_I 1 1 1 1
0 10 20 30 40
LAG
<
O_
L
S‘-:) C5:"L'|"4"I'"I"I""I'1 """ el i it il
ISR R
™ -
?_I v 1 1 1 1
0 10 20 30 40
LAG

5.7.1 Model Selection

We have now learned about AR(p), MA(q), and ARMA(p,q) models. When we have observed
data, we first need to estimate and remove the trend and seasonality and then choose a
stationary model to account for the dependence in the errors.

Below, we have a few guidelines and tools to help you work through the modeling process.

116

5.7.1.1 Time Series Plot

Look for possible long-range trends, seasonality of different orders, outliers, constant or
non-constant variance.

Model and remove the trend.
Model and remove the seasonality.

Investigate the outliers for possible human errors or find explanations for their extreme
values.

If the variability around the trend/seasonality is non-constant, you could transform the
series with a logarithm or square root, or use a more complex model such as the ARCH
model.

5.7.1.2 ACF and PACF Plots

AR(p) models have PACF non-zero values at lags less than or equal to p and zero
elsewhere. The ACF should decay or taper to zero in some fashion.

MA(q) models have theoretical ACF with non-zero values at lags less than or equal to
q. The PACF should decay or taper to zero in some fashion.

ARMA models (p and ¢ > 0) have ACFs and PACFs that taper down to 0. These are
the trickiest to determine because the order will not be obvious. Try fitting a model
with low orders for one or both p and ¢ and compare models.

If the ACF and PACF do not decay to zero but instead have values that stays close to
1 over many lags, the series is non-stationary (non-constant mean) and differencing or

estimating to remove the trend will be needed. Try a first difference and look at the
ACF and PACF of the difference data.

If all of the autocorrelations are non-significant (within the horizontal lines), then the
series is white noise, and you don’t need to model anything. (Great!)

5.7.1.3 Diagnostics

Once we have a potential model that we are considering, we want to make sure that it fits the
data well. Below are a few guidelines to check before you determine your final model.

1.

Look at the significance of the coefficients. Are they significantly different from zero? If
so, great. If not, they may not be necessary and you should consider changing the order
of the model.

. Look at the ACF of the residuals. Ideally, our residuals should look like white noise.

117

3. Look at a time series plot of the residuals and check for any non-constant variance. If you
have non-constant variance in the residuals, consider taking the original data’s natural
log and analyzing the log instead of the raw data.

4. Look at the p-values for the Ljung-Box Test (see Real Data Example for example, R
code and output). For this test, H;, : the data are independent, and H , : data exhibit
serial correlation (not independent). The test statistic is

2
"k
n—k

M;

Q, =n(n+2)

k=1

where h is the number of lags being tested simultaneously. If H, is true, @, follows a Chi-
squared distribution with df = h for very large n. So you’d like to see large p-values for each
lag h to not reject the H.

5.7.1.4 Criteria to Choose

Which model to choose?

e Choose the ‘best’ model with the fewest parameters
¢ Pick the model with the lowest standard errors for predictions in the future
o Compare models with respect to the MSE, AIC, and BIC (the lower the better for all)

o If two models seem very similar when converted to an infinite order MA, they may be
nearly the same. So it may not matter which ARMA model you end up with.

5.8 Real Data Example

In order to fit these models to real data, we first must get a detrended stationary series
(removing seasonality as well). This can be done with estimation and removing, or through
differencing.

For the birth data, we tried a variety of ways of removing the trend and seasonality with
differencing in the Model Components chapter. While the moving average filter worked well.
Let’s try a fully parametric approach by using a spline to model the trend and indicators for
the seasonality,

118

library(splines)

birthTS <- data.frame(Year = time(birth), #time() works on ts objects
Month = cycle(birth), #cycle() works on ts objects
Value = birth)

birthTS <- birthTS %>%
mutate(Time = Year + (Month-1)/12)

TrendSeason <- birthTS %>
Im(Value ~ bs(Time, degree = 2, knots = c(1965, 1972), Boundary.knots = c(1948,1981)) + fa

birthTS <- birthTS %>%
mutate(ResidualTS = Value - predict(TrendSeason))

The next step is to consider the ACF and PACF to see if you can recognize any clear patterns
in dropping or decaying (MA or AR).

acf2(birthTS$ResidualTs)

Series: birthTS$ResidualTS

L <tz
T A ———
SF ST FEFTTFFFFFFFFFF--
0 1 2 3 4
LAG + 12
y s
O o
& ~ _Z_IZ'Z'Z'ZZZZTf?Z'ZILZZ]]IZZTZ]ZIZCZZZ]ZZ'Z'ZZIZ]ZZZ.ZZZIZZZZ
T | | | |
0 1 2 3 4
LAG + 12

We note the ACF is decaying slowly to zero, and the PACF has 1 clear non-zero lag. These
two graphs suggest an AR(1) model. Let’s fit an AR(1) model and a few other candidate
models with sarima() in the astsa package.

119

mod.fitl <- sarima(birthTS$ResidualTS, p = 1,d = 0,9 = 0) #AR(1)

Model: (1,0,0) Standardized Residuals

1950 1955 1960 1965 1970 1975 1980
Time
. @ .
ACF of Residuals = Normal Q-Q Plot of Std Residuals

-3 -2 -1 0 1 2 3
LAG + 12 Theoretical Quantiles

ACF
Sample Qua

p values for Ljung—Box statistic

p value
0.0 1.0

--@j-@--o--?--o--o-;o--o--q--o--o-;cr-cr-gr-tr-trjtr-rr-ry-
5 10 15 20
LAG (H)

mod.fit1$fit

Call:

arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = 3),

xreg = xmean, include.mean = FALSE, transform.pars = trans, fixed = fixed,
optim.control = list(trace trc, REPORT = 1, reltol = tol))

Coefficients:
arl xmean
0.7709 0.3080
s.e. 0.0334 1.5785

sigma”2 estimated as 49.61: 1log likelihood = -1257.84, aic = 2521.69

mod.fit2 <- sarima(birthTS$ResidualTS, p = 1,d = 0,9 = 1) #ARMA(1,1)

120

Model: (1,0,1) Standardized Residuals

~: WWWNWWWMWMWW’WWW“WW
™ 3
I T T v T v T v T v T v T v T
1950 1955 1960 1965 1970 1975 1980
Time
. [} .
ACF of Residuals = Normal Q-Q Plot of Std Residuals
] S -
LL - 5 -
2 \—|E"'H"I’l.‘_'j’l,"ﬂ'.'?f".IT"."" 194 :M
P Mg | s . g) ey LAY | W L) N e %i 5
| T v T v T v T T v T v T v T v T v T v T
0 1 2 3 4 E -3 -2 -1 0 1 2 3
LAG + 12 o Theoretical Quantiles
o p values for Ljung—Box statistic
8 <7
S -
a g-'l'O“O"(IJ"'O"'O'l‘O"O"1?"'O"O‘l'O"O“'(IJ"'O“O'.'O"O"'(IJ"
5 10 15 20
LAG (H)

mod.fit2$fit

Call:

arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),

xreg = xmean, include.mean = FALSE, transform.pars = trans, fixed = fixed,
optim.control = list(trace = trc, REPORT = 1, reltol = tol))

Coefficients:
arl mal xmean
0.8557 -0.2106 0.5044
s.e. 0.0412 0.0886 1.9553

sigma”2 estimated as 48.77: 1log likelihood = -1254.71, aic = 2517.41

121

mod.fit3 <- sarima(birthTS$ResidualTS, p = 2,d = 0,9 = 0) #AR(2)

Model: (2,0,0) Standardized Residuals
“:
ﬁf
1950 1955 1960 1965 1970 1975 1980
Time
. @ .
ACF of Residuals = Normal Q-Q Plot of Std Residuals
i [4
LL 4 S5 N -
2 HE‘_"H.‘,',rlr'.n.--Tl_'-',T',,".n'-.r-,-.r < :M
DA S i s .y) LS A | N N L) N e %i T2
I T T v T v T v T T v T v T v T v T v T v T
0 1 2 3 4 E -3 -2 -1 0 1 2 3
LAG + 12 « Theoretical Quantiles
p values for Ljung—Box statistic
o ©-
S — -
Tg]
a g:‘I'C"O“(IJ"'O"'O‘I‘O“O“t?'"O“O‘I‘O"O"'(IJ"‘O"O'.‘O"O"'(IJ"
5 10 15 20
LAG (H)

mod.fit3$fit

Call:

arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = 3),

xreg = xmean, include.mean = FALSE, transform.pars = trans, fixed = fixed,
optim.control = list(trace trc, REPORT = 1, reltol = tol))

Coefficients:
arl ar2 xmean
0.6864 0.1127 0.4171
s.e. 0.0514 0.0523 1.7847
sigma”2 estimated as 48.99: 1log likelihood = -1255.54, aic = 2519.07

#Choose a model with lowest BIC
mod.fit1$BIC

NULL

122

mod.fit2$BIC

NULL

mod.fit3$BIC

NULL

sarima.for (birthTS$ResidualTS,10, p = 1,d = 0,q = 1) #forecasts the residuals 10 time units

2 o

ol @&

e @
wn 0
E ol®
© N
-
g
g 9
0 d
L 74
) O~
|_
S
= 4

o

(T]_

O
1972 1974 1976 1978 1980
Time
$pred
Feb Mar Apr May Jun Jul Aug Sep
1979 3.505241 3.072234 2.701709 2.384649 2.113339 1.881179 1.682518 1.512523
Oct Nov

1979 1.367058 1.242583

$se
Feb Mar Apr May Jun Jul Aug
1979 6.983803 8.310959 9.161616 9.737476 10.138415 10.422217 10.625218
Sep Oct Nov

1979 10.771436 10.877254 10.954089

123

Now, you’ll notice that we went through the following steps:

1. Model Trend and Remove
2. Model Seasonality and Remove
3. Model Errors

The forecasts look funny because they are only forecasts for errors. If we have taken a para-
metric approach to estimate the trend and the seasonality, we can incorporate the modeling
and removal process in the sarima() function.

First, we need to create a matrix of the variables for the trend and seasonality. We can easily
do that with model.matrix() and remove the intercept column with [,-1]. Then we pass
that matrix to sarima() with the xreg= argument. This will be useful for us when we do
forcasting.

X <- model.matrix(TrendSeason) [,-1] #remove the intercept

GoodMod <- sarima(birthTS$Value, p = 1,d = 0, q = 1, xreg = X)

Model: (1,0,1) Standardized Residuals

| T T T T T T T
1950 1955 1960 1965 1970 1975 1980

Time

= Normal Q—-Q Plot of Std Residuals

O

ACF of Residuals

-3 -2 -1 0 1 2 3

ACF
0.3
Sample Quan
4 2
\

Theoretical Quantiles

p values for Ljung—Box statistic

p value
0

'I'O"O'"(IJ"'O'"O'I'O"O'"(I)"'O'"O'I'O"O"'(?"'O"O'I'O"O"'(IJ"
5 10 15 20
LAG (H)

Now, you should notice two things from this output:

1. There is a slightly higher ACF of residuals at lag 1.0 (at 12 months or 1 year — which is
the period of the seasonality)

124

2. The p-values for the Ljung-Box statistic are all < 0.05. That is not ideal because it
suggests that the residuals of the full model are not independent white noise. There is
still dependence that we need to account for with the model.

We'll come back to fix this. Before we do that, let’s talk about the function being called
sarima() instead of arma(). What does the i' stand for, and what does thes‘ stand
for? Read the next section to find out!

5.9 ARIMA and SARIMA Models

5.9.1 ARIMA Models

ARIMA models are the same as ARMA models, but the i' stands for 'integrated',
which refers to differencing. If you were differencing to remove the trend
and seasonality, you could incorporate that difference in the model fitting
procedure (like we did with the parametric modeling andxreg=").

Below, we show fitting the model on the ORIGINAL data before removing the trend or sea-
sonality. Then we do a first difference to remove the trend and a first-order difference of lag
12 to remove the seasonality.

The little d indicates the order of differences for lag 1, the big D indicates the order of seasonal
differences, and S gives the lag for the seasonal differences. Once we know the differencing
that we need to do, we incorporate the differencing into the model fitting, which will give us
more accurate predictions for the future.

mod.fit4 <- sarima(birth, p =0, d =1, q=1, D=1, S = 12) #this model includes lag 1 dif:

125

Model: (0,1,1) x (0,1,0 Standardized Residuals

1950 1955 1960 1965 1970 1975 1980

Time
. @ .
< ACF of Residuals = Normal Q-Q Plot of Std Residuals
. - (‘5 -
L e4d] S i
2 q.:-s '__'_-'-_|-_-'_"_"_|_'_-_|; 1|_|_|¢I|__'I_|_J_ (04 N'N
: - o]
? -I T T T T B_ ql- - T v T v T v T v T v T v T
0 1 2 3 4 E -3 -2 -1 0 1 2 3
LAG + 12 o Theoretical Quantiles
o p values for Ljung—Box statistic
8 <7
S -
a 2%-00 00000000000 0000000V0 00000000V O 000UV -
5 10 15 20 25 30 35
LAG (H)

mod.fit4$fit

Call:
arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list
REPORT = 1, reltol = tol))
Coefficients:
mal
-0.5221

s.e. 0.0547

sigma”2 estimated as 71.62: log likelihood = -1279.83, aic = 2563.65

Notice, this model with differencing isn’t any better than the ARMA model with the spline
trend and indicator variables for the month.

5.9.2 Seasonal ARIMA Models

The s in the sarima() is seasonal. A Seasonal ARIMA model allows us to add a seasonal lag
(e.g., 12) into an ARMA model. The model is written as

126

©(B%)$(B)Y, = ©(B%)0(B)W,
where the non-seasonal components are:
¢(B)=1—¢,B— ¢QB2 - ¢po
and
0(B) =1+06,B+0,B>+--+0,B°
and the seasonal components are:
(B =1—&,B% —®,B%5 — ... — <I>pBPS
and
O(B%) =1+ 6,B% +0,B% + ..+ 6, B
Why you might need a Seasonal ARMA?

If you see strong seasonal autocorrelation in the residuals after you fit a gopod ARMA model,
try a seasonal ARMA.

If strong seasonal autocorrelation (non-zero values at lag S, 25, etc.) drops off after 3 seasonal
lags, you can fit a seasonal MA(Q) model.

On the other hand, if you see a strong seasonal partial autocorrelation that drops off after P
seasonal lags, you can fit a seasonal AR(P) model.

acf2(resid(GoodMod$fit)) #Notice the high ACF and PACF for lag 1 year (12 months) -- only lo

Series: resid(GoodMod$fit)

N
O T T T T
"0 1 2 3 4
LAG + 12
™ _
o
.
<ol |.d | L T
[l F I|'|I | T
(\!____ ___
O T T T T
"0 1 2 3 4
LAG + 12

127

mod.fits <- sarima(birthTS$Value, p = 1,d =0, gq=1,P=0,D =0, Q =1, S

Warning in arima(xdata, order = c(p, d, q), seasonal = list(order = c(P,
possible convergence problem: optim gave code = 1

ACF
-0.1

p value
0

-4

0 1.0

Model: (1,0,1) x (0,0,1 Standardized Residuals

1950 1955 1960 1965 1970 1975 1980
Time
. [} .
ACF of Residuals = Normal Q-Q Plot of Std Residuals
J g E O
- N -
:_I_ _I hi -_|'_'r'l_'l_'l_l-_||_ 1-I'_IT'T|_I_I|_'|Ai|_l,_l|__ i O :/N,
-_IJl-_'___I___'___I___'___I___'_IJ_I_ %_ ql--(? v 1 v 1 v 1 v 1 v 1 v 1
0 1 2 3 4 E -3 -2 -1 0 1 2 3
LAG + 12 @ Theoretical Quantiles
p values for Ljung—Box statistic
7700 0000000000000V I0VITO0VTO00V000T000-

5 10 15 20 25 30 35
LAG (H)

mod.fit6 <- sarima(birthTS$Value, p = 1,d =0, q=1,P =1, D=0, Q =0, S = 12, xreg = X)

128

Model: (1,0,1) x (1,0,0 Standardized Residuals

1950 1955 1960 1965 1970 1975 1980

Time
. [} .
ACF of Residuals = Normal Q-Q Plot of Std Residuals

J ®© 4
LL - 5 -

O L Y - o -
Q g,':_'pr'_'_'_-'_-_'_'_u___'::'__n_'fn_--_'_u'j'- o #IM

| T T T T T o | T v T v T v T v T v T v T
0 1 2 3 4 g -3 -2 -1 0 1 2 3
LAG + 12 o Theoretical Quantiles

p values for Ljung—Box statistic

o
8 <7
T
a g-"O'C?O’OI'O'O'CID'O'O'lO'O'C?'O'OTO'O’C?'@'O’lO'O'(?'O'OTO'O'fI)'G'OlO'O'(?'O"
5 10 15 20 25 30 35
LAG (H)
GoodMod$BIC
NULL

mod.fit6$BIC

NULL

mod.fit5$BIC

NULL

While the p-values are still not ideal, the model with spline trend, indicator variables for
the month, ARMA(1,1) + SeasonalAR(1) for errors has the lowest BIC, and the SARIMA
coefficients are all significantly different from zero.

5.10 Forecasting

Typically, when we are working with time series, we want to make predictions for the near
future based on recently observed data.

129

Let’s think about an example. Imagine we had data yy,...,y, and we estimated the mean
and seasonality such that e, =y, — f(t|yq, ..., y,,) — S(t|yy, .., y,,). Thus, if we knew or had a

trend seasonality

prediction of e,, we could get a prediction of y, = f(t|yy, ...,) + S(Eyy, s y,,) +€;.-

trend seasonality

Let’s say we modeled e, with an AR(2) process, then

iid
€ = P16, 1 + Poep o + W, W, ~ N(0,02)

Since we have data for y,,...,y,,, we have data for e, ...,e,, to use to estimate ¢, ¢, and
2
o

To get a one-step ahead prediction based on the n observed data points, e}, ;, we could plug
into our model equation,

iid
Cnt1 = ¢len + ¢2€n71 + Wn+1 Wt ~ N(07 0’3})

We do have the values of e, and e,,_; plus estimates of ¢, and ¢,. But we don’t know w,, ;.
However, we know that our white noise is about 0 on average. So, our prediction one step
ahead based on n observed data points is

i1 = P16, + P26y

What about two steps ahead? If we plug it into our model,

id
€nia = 16,1 + gl + Wi o W, < N(0,02)

we see that we do have the value of e, plus estimates of ¢; and ¢,. But we don’t know e, ,
and W, ,. Similar to before, we can assume the white noise is, on average, 0, and we can plug
in our predictions. So, our two-step ahead prediction based on n data points is

s n —_ r - n C
Cnia = P1€ny1 + P26,
We could continue this process,

n

> _ I -on sn
Cn+tm — ¢1€n+m71 + ¢2en+m72

for m > 2. In general, to do forecasting with an ARMA model, for 1 < j < n we use residuals

for w; and let w; = 0 for j > n. Similarly, for 1 < j < n, we use observed data for e; and plug
in the forecasts e} for j > n.

130

5.10.1 Prediction Intervals

We know that our predictions will be off from the truth. But how far off?

Before we can estimate the standard deviation of our errors, we need to know one more thing
about ARMA models.

5.10.1.1 ARMA to MA(c0)

With a stationary ARMA model, we can write it as an infinite MA process (similar to the AR
to infinite MA process),

[ee]

Y, =) ¥,W,,

J=0

where ¥, =1 and Z;’il |V, | < oc.

The R command ARMAtoMA(ar = 0.6, ma = 0, 12) gives the first 12 values of ‘I'j for an
AR(1) model with ¢; = 0.6.

ARMAtoMA(ar = 0.6, ma = 0, 12)

[1] 0.600000000 0.360000000 0.216000000 0.129600000 0.077760000 0.046656000
[7] 0.027993600 0.016796160 0.010077696 0.006046618 0.003627971 0.002176782

The R command ARMAtoMA(ar = 0.6, ma = 0.1, 12) gives the first 12 values of ¥ j for an
ARMA(1,1) model with ¢y = 0.6 and 6; = 0.1.

ARMAtoMA(ar = 0.6, ma = 0.1, 12)

[1] 0.700000000 0.420000000 0.252000000 0.151200000 0.090720000 0.054432000
[7] 0.032659200 0.019595520 0.011757312 0.007054387 0.004232632 0.002539579

131

5.10.1.2 Standard Errors of ARMA Errors

In order to create a prediction interval for g ., we need to know how big the error, y;;,,, —
Yntms May be.

It can be shown that

Va’r(@g—i—m - yn+m) = O-g) \115

and thus, the standard errors are

where O'A%U and U ; are given by the estimation process.

Let’s see this play out with our birth data. We can estimate the ARMA model with sarima()
and pull out the estimates of the sigma and the Psi;’s. Compare our hand calculations to
the standard errors from arima.for().

sarima (birthTS$ResidualTS, p = 1,0,q9 = 1)

initial value 2.384529
iter 2 value 2.179452
iter 3 value 2.052027
iter 4 value 2.026011
iter 5 value 1.962581
iter 6 value 1.952577
iter 7 value 1.935739
iter 8 value 1.934205
iter 9 value 1.933599
iter 10 value 1.933531
iter 11 value 1.933495
iter 12 value 1.933483
iter 13 value 1.933478
iter 14 value 1.933470
iter 15 value 1.933456
iter 16 value 1.933451
iter 17 value 1.933448
iter 18 value 1.933444
iter 19 value 1.933443

132

iter 20 value 1.933440
iter 21 value 1.933436
iter 22 value 1.933433
iter 23 value 1.933433
iter 24 value 1.933433
iter 25 value 1.933433
iter 25 value 1.933433
iter 25 value 1.933433

final wvalue 1.933433
converged

initial value 1.945918
iter 2 value 1.945242
iter 3 value 1.945221
iter 4 value 1.945011
iter 5 value 1.944980
iter 6 value 1.944962
iter 7 value 1.944938
iter 8 value 1.944909
iter 9 value 1.944900
iter 10 value 1.944897
iter 11 value 1.944892
iter 12 value 1.944889
iter 13 value 1.944888
iter 14 value 1.944888
iter 14 value 1.944888
iter 14 value 1.944888

final wvalue 1.944888
converged
<O

Coefficients:

Estimate SE t.value p.value
arl 0.8557 0.0412 20.7562 0.0000
mal -0.2106 0.0886 -2.3770 0.0180

xmean 0.5044 1.9553 0.2580 0.7966
sigma”2 estimated as 48.77351 on 370 degrees of freedom

AIC = 6.749101 AICc = 6.749275 BIC = 6.791155

133

ACF

p value

psi

Model: (1,0,1) Standardized Residuals

1950 1955 1960 1965 1970 1975 1980

Time
. [} .
ACF of Residuals = Normal Q-Q Plot of Std Residuals
J [g
. 5 -
atc-teodromesgleceocnoce-ar| O ZM
| [gy I P R W Ly W e B RS
| T v T v T v T D_ I T v T v T v T v T v T v T
0 1 2 3 4 E -3 -2 -1 0 1 2 3
LAG + 12 o Theoretical Quantiles
o p values for Ljung—Box statistic
=k
g:‘l‘O"O"(IJ"'O"‘O‘l‘O"O"t?"'O"O‘l'O"O“'(IJ"‘O"O‘l'O“O“'(IJ"
5 10 15 20
LAG (H)

= c(1,ARMAtoMA(ar = .8727,ma = -0.2469, 9))

sigma2 = 43.5

sarima.for (birthTS$ResidualTS, n.ahead=10, p = 1, d = 0, q = 1)$se

birthTS$ResidualTS

1972 1974 1976 1978 1980
Time

134

Feb Mar Apr May Jun Jul Aug
1979 6.983803 8.310959 9.161616 9.737476 10.138415 10.422217 10.625218
Sep Oct Nov
1979 10.771436 10.877254 10.954089

sqrt (sigma2*cumsum(psi~2)) #The SE for the predictions are the same

[1] 6.595453 7.780470 8.573809 9.131903 9.535062 9.831025 10.050588
[8] 10.214643 10.337841 10.430694

But if we incorporate the differencing for the trend/seasonality into the model, we’ll get fore-
casts in the original units of y, instead of just Y.

sarima.for(birth, n.ahead = 24, p=0,d =1, q=1, P=0,D=1, Q=1, S =

o

< -

™

0‘
o 0‘»:»0
S @
Q

o [P Olo 0‘0 A -

S O Q [\

o™ O b D) DO, OV,
< ” 4 o 5 ® ® ® ®
s o OO @ o | ® @M \Pe (A X
o - . 0, Q) o,

« 1 o “'? i & ¥ (0 00:?”0 % o "’0 "':‘p \ "‘o “°

I\d Qo 0, 0”0 ‘ \
o & & P &0 o | A I© W, O
Q& o 9 :‘0 3 X 5 |F ° T° ¢ T
V) YO O
o d O 0
g.. & A OO
1972 1974 1976 1978 1980
Time
$pred
Jan Feb Mar Apr May Jun Jul Aug

1979 258.2172 281.7558 263.9016 274.8702 271.1040 295.1588 302.0120

1980 276.2490 258.9313 282.4699 264.6157 275.5843 271.8181 295.8729 302.7261
1981 276.9632

Sep Oct Nov Dec
1979 295.9419 289.5935 272.8265 283.9909

135

1980 296.6561 290.3076 273.5406 284.7050

1981
$se

Jan Feb Mar Apr May Jun Jul
1979 6.884911 7.781346 8.584677 9.319014 9.999569 10.636668

1980 13.857228 14.765390 15.407441 16.023785 16.617285 17.190307 17.744834
1981 20.763284
Aug Sep Oct Nov Dec
1979 11.237707 11.808192 12.352358 12.873542 13.374432
1980 18.282549 18.804895 19.313118 19.808307 20.291414
1981

We could also include explanatory variables into this model to directly estimate the trend and
the seasonality with xreg and newxreg. You'll use model.matrix() [,-1] to get the model
matrix of explanatory variables to incorporate into xreg and create a version of that matrix
with future values for newxreg.

Note about B-Splines: To use a spline to predict in the future, you must adjust the Bound-
ary.knots to extend past where you want to predict for zreg and newzreg.

Below, I create a matrix of explanatory variables called X that includes the B-spline (note I
extended the Boundary.knots to extend to the period I want to predict) and indicators for
Month. I do this with model.matrix() [,-1], removing the first column for the intercept.
Then I create a matrix of those explanatory variables for times in the future, NewX. Based
on this data set, I took the last 2 years and added 2 years to get the times for the next two
years.

One Model for Trend (B-spline - note how the Boundary Knots extend beyond the model and pr

TrendSeason <- birthTS %>%
Im(Value ~ bs(Time, degree = 2, knots = c(1965, 1972), Boundary.knots = c(1948,1981)) + fa

X = model.matrix(TrendSeason) [,-1]

birthTS [nrow(birthTS),c('Time', 'Month')] #Last time observation

Time Month
373 1979 1

newdat = data.frame(Month = c(2:12,1:12,1), Time 1979 + (1:24)/12)

NewX = model.matrix(~ bs(Time, degree = 2, knots c(1965,1972), Boundary.knots = c(1948,198

136

o Q
& o
| 0l
o P 1P 0 “0
5 8_ 1 0 ® D 0‘“ \
< P O H
6>9 v, b o o o O 0 D s
N 8 i d O ® 0 “‘ o 5) o ":‘0 &
'E N o [do P D \® P P 1o z““ Al
; o "" D (D ¢ 1G6H 0‘ /] P
= o ‘«.’ ?? D o P ‘ O i
© - O ol & 0,.”‘ \ d || h 0“‘0 o
~ ° D O|]E ® 0‘, > i
O O O
1972 1974 1976 1978 1980
Time
$pred
Jan Feb Mar Apr May Jun Jul Aug
1979 257.4217 279.5911 257.0032 268.0920 266.4857 294.9724 306.1982
1980 281.1732 260.4987 282.5277 262.4848 273.9019 274.9926 301.9751 310.1671
1981 286.4452
Sep Oct Nov Dec
1979 296.7487 290.3933 275.3080 283.7623
1980 306.5751 300.8098 281.9722 292.2112
1981
$se
Jan Feb Mar Apr May Jun Jul Aug
1979 7.923840 8.999167 8.999167 8.999167 8.999167 8.999167 8.999167
1980 8.999167 9.394536 9.506053 9.506053 9.506053 9.506053 9.506053 9.506053
1981 9.506053
Sep Oct Nov Dec
1979 8.999167 8.999167 8.999167 8.999167
1980 9.506053 9.506053 9.506053 9.506053

1981

137

1, S =12, xr

5.11 Appendix
5.11.1 Derivations for AR(1) Model
The model is stated

Vi=0+¢ Y + W,

where W, “N (0,02) is independent Gaussian white noise with mean 0 and constant vari-

ance, 02,

5.11.1.1 Approach 1: Assume Stationarity
Expected Value
E(Y,) = E(6+ .Y, + W) = E(d) + E(¢,Y, 1) + E(W,)

=0+ ¢ E(Y,1)+0
=0+ ¢ E(Y,)

if the process is stationary (constant expected value).

If we solve for E(Y,), we get that E(Y,) = pu = 1f¢1'
Variance

By the independence of current error and Y, ; (as Y,_; is only a function of past errors),

Var(Y,) =Var(0 + ¢,Y, | + W) =Var(¢,Y, 1 +W,)
=Var(¢,Y, 1) + Var(W,)
= piVar(Y, ;) + o,

= ¢iVar(Y;) + o

w

if the process is stationary.

If we solve for Var(Y;), then we find that

0.2

Var(Y,) = —“=
Y19

138

Since Var(Y,) > 0, then 1 — ¢? > 0 and therefore |¢,| < 1.
Covariance

Let’s assume that the data have a mean of 0 (we’ve removed the trend and seasonality) such
that 6 =0and Y, = ¢, Y, | + W,.

Then the Cov(Y,,Y,_ ;) = E(Y,Y,_,). For k =1 (observations 1 time unit apart),

Yy (1) = Cov(Y,, Y, 1) = E(Y,Y, 1) = E(1Y,1 + W)Y, 1)
= E(¢1Y75%1 + WY y)
= ¢, B(Y,) + E(W,)E(Y;) since Cov(W},Y; ;) =0
= ¢ Var(Y, ;) +0E(Y, ;)
= ¢1Var(y,)

Thus,

Cov(Y,,Y;) o ¢ Var(Y,)

= Y.,.Y, = =
P1 COT(t tfl) Var(Yt) Var(}/t)

=

For k > 1, multiple each side of the model by Y,_, and take the expectation.

Yt = ¢1Yt—1 + Wt

Y, Yy =Y, Y Y W,
E(Y, .Y;) = E(1Y, Y, 1) + E(Y, ,W})

CO{U(Y;tfka Y;t) - ¢1CO’U(Y;571€7 Y;fl)
Ly(k) = 15y (k—1)

If we work recursively, starting with Xy-(1), we get

Yy (1) = 613y (0)
Dy (2) = ¢4 3y (1) = ¢75y(0)
Dy (3) = 615y (2) = ¢%y(0)

139

Ey (k) = leY(O)
So the correlation for observations k lags apart is

~ By(k) dfVar(yy)
Pr = Var(y,) Var(Y,)

= o}

5.11.1.2 Approach 2: Write AR(1) as MA(c0)
Yi=0+¢,Y, 1+ W,

where t = ..., —3,—2,—1,0,1,2,3, ...

By successive substitution, we can rewrite this model,

Y, =0+ 6,0+ @Yo+ W) + W, =0(1+6y) + 1Y, 5 + 0 W,y + W,
=0(1+¢1) + 610 + 1Yy 5+ Wy o) + oWy + W,
=0(1+ 01+ 1) + VY, 5+ W p + 0 Wy + W,
=06(1+¢; + QS% +) Wt oWy + ¢%Wt—2 + ¢:13Wt—3 + -
Using infinite geometric series (ZZO rt = (1—r)~1if |r| < 1), the first part converges to ﬁ

if |¢,| < 1. Similarly, the sum of random variables converges to a finite value when |¢,| < 1.

With this format, it is clear that for an AR(1) process,

) 0
E(Y,) = E(T W+ Wy + GiW, oy +) =
1—¢, 1—¢;
g 2
Var(Y,) = Vﬂ”"(l — + Wi+ oWy +01We 5+)
1
=oo(14+¢7 +¢1 +)
2
o .
— 1_¢2 1f’¢1’<1
1

Let h > 0, then

)
1— 4, AWty Wiy +1W, ot 1_7(;51+Wt—h+¢1Wt—h—l"Hb%Wt—h—Z_'_'")

Cov(Y,,Y,_;) = Cou(

140

= Cov(W, +)W,y + ¢IW, 5+ W, + 0 Wy + G3W_p g+)

= Z CO’U(QZb}f_Fthfhfja ﬁb{ Wtfhfj)
7=0

¢}11+2jva7a(Wtfh7j)
=0

oo

o

= QS?O-QQU E :Cbl]
7=0

_ ¢hon,

1

if o] <1

Thus,

COU(Y;fa j}/tfh) .

o o (Zle',%U Uw
= SDV)SDY,) 1-02 -2
= ¢h

COT(Y;) Y;bfh)

5.12 Other Time Series References

To supplement these notes, please check out the following time series textbooks for a more
thorough introduction to the material.

o “Time series: a data analysis approach using R” by Robert Shunway and David Stoffer
(Shunway and Stoffer 2019)

e “The Analysis of Time Series: An Introduction” by Christopher Chatfield (Chatfield and
Xing 2019) is available at the Macalester Library.

e “Time Series Analysis with Applications in R” by Jonathan Cryer and Kung-Sik Chan
(Cryer and Chan 2008)

141

https://macalester.on.worldcat.org/oclc/51780817

6 Longitudinal Data

Although the term longitudinal naturally suggests that data are collected over time, the
models and methods we will discuss broadly apply to any kind of repeated measurement
data. That is, although repeated measurements most often take place over time, this is not
the only way that measures may be taken repeatedly on the same unit. For example,

e The units may be human subjects. For each subject, reduction in diastolic blood pressure
is measured on several occasions, each involving the administration of a different dose
of anti-hypertensive medication. Thus, the subject is measured repeatedly with varying
doses.

e The units may be trees in a forest. For each tree, measurements of the tree’s diameter
are made at several different points along the tree’s trunk. Thus, the tree is measured
repeatedly over positions along the trunk.

e The units may be pregnant female rats. Each rat gives birth to a litter of pups, and the
birth weight of each pup is recorded. Thus, the rat is measured repeatedly over each of
her pups. The third example is slightly different from the other two in that there is no
natural order to the repeated measurements.

Thus, the methods will apply more broadly than the strict definition of the term longitudinal
data indicates — the term will mean, to us, data in the form of repeated measurements
that may well be over time but may also be over some other set of conditions. Because time is
most often the measurement condition, however, many of our examples will involve repeated
measurement over time. We will use the term outcome to denote the measurement of interest.
Because units are often human or animal subjects, we use the terms unit, individual, and
subject interchangeably.

6.1 Sources of Variation

We now consider why the values of a characteristic that we might observe vary over time.

e Biological variation: It is well-known that biological entities are different. However,
living things of the same type tend to be similar in their characteristics; they are not
the same (except perhaps in the case of genetically-identical clones). Thus, even if we
focus on rats of the same genetic strain, age, and gender, we expect variation in the

142

possible weights of such rats that we might observe due to inherent, natural biological
variation. This is variation due to genetics, environmental, and behavioral factors.
Thus, this variation is at the unit-level, so we see between unit variation.

Variation due to Condition or Time : Entities change over time and under different
conditions. Suppose we consider rats over time or under various dietary conditions.
In that case, we expect variation in the possible weights of such rats that we might
observe due to variation due to condition or time. Thus, this variation is at the
observation-level so we see within unit variation.

Measurement error: We have discussed rat weight as though once we have a rat in hand,
we may know its weight exactly. However, a scale must be used. Ideally, a scale should
register the true weight of an item each time it is weighed, but because such devices are
imperfect, scale measurements on the same item may vary time after time. The amount
by which the measurement differs from the truth may be considered an error, i.e., a
deviation up or down from the true value that could be observed with a perfect device.
A fair or unbiased device does not systematically register high or low most of the time;
rather, the errors may go in either direction with no pattern. Thus, this variation is
typically at the observation-level, so we see within unit variation.

There are still further sources of variation that we could consider. They could be at the
unit-level or the observational-level. For now, the important message is that, in considering
statistical models, it is critical to be aware of different sources of variation that cause
observations to vary.

With cross-sectional data (one observed point in time in units sampled from across the
population - no repeated measures), we

cannot distinguish between the types of variation

use explanatory variables to try and explain any sources of variation (biological and
other)

use model error as a catch-all to account for any leftover variation (measurement or
other)

With longitudinal data, since we have repeated measurements on units, we

separate variation within units (measurement and others) from variation between units
(biological and others)

use time-varying explanatory variables to try and explain within unit variation
use time-invariant explanatory variables to try and explain between unit varia-
tion

use probability models to account for left over within or between variation

143

6.2 Data Examples

We can consider several real datasets from various applications to put things into a firmer per-
spective. These will not only provide us with concrete examples of longitudinal data situations
but also illustrate the range of ways that data may be collected and the types of measurements
that may be of interest.

6.2.1 Example 1: The orthodontic study data of Potthoff and Roy (1964).
6.2.1.1 Data Context

A study was conducted involving 27 children, 16 boys and 11 girls. On each child, the distance
(mm) from the center of the pituitary to the pterygomaxillary fissure was made at ages 8, 10,
12, and 14 years of age. In the plot below, the distance measurements are plotted against the
age of each child. The trajectory for each child is connected by a solid line so that individual
child patterns may be seen, and the color of the lines denotes girls (0) and boys (1).

dat <- read.table("./data/dental.dat", col.names=c("obsno", "id", "age", "distance", "gender

dat %>Y%
ggplot(aes(x = age, y = distance, col = factor(gender))) +
geom_line(aes(group = id)) +
geom_smooth (method="'1m',se=FALSE,1wd=3) +
theme _minimal () +
scale color_discrete('Gender')

“geom_smooth()~ using formula = 'y ~ x

1

144

32

28
) Gender
<
K 24)
0
© e 1

20

16

8 10 12 14
age

Plots like this are often called spaghetti plots, for obvious reasons! Each set of connected
points represented one child and their outcome measurements over time.

6.2.1.2 Research Questions

The objectives of the study were to

¢ Determine whether distances over time are larger for boys than for girls
o Determine whether the rate of change (i.e., slope) for distance is similar between boys
and girls.

Several features are notable from the spaghetti plot of the data:

o Each child appears to have his/her own trajectory of distance as a function of age.
For any given child, the trajectory looks roughly like a straight line, with some random
fluctuations. But from child to child, the features of the trajectory (e.g., its steepness)
vary. Thus, the trajectories are all similar in form but vary in their specific characteristics
among children. Also, note any unusual trajectories. In particular, there is one boy whose
pattern fluctuates more profoundly than those of the other children and one girl whose
distance is much “lower” than the others at all time points.

145

e The overall trend is for the distance measurement to increase with age. The trajectories
for some children exhibit strict increases with age. In contrast, others show some inter-
mittent decreases (biologically, is this possible? or just due to measurement error?), but
still with an overall increasing trend across the entire six-year period.

e The distance trajectories for boys seem, for the most part, to be “higher” than those for
girls — most of the boy profiles involve larger distance measurements than those for girls.
However, this is not uniformly true: some girls have larger distance measurements than
boys at some ages.

o Although boys seem to have larger distance measurements, the rate of change of the
measurements with increasing age seems similar. More precisely, the slope of the in-
creasing (approximate straight-line) relationship with age seems roughly similar for boys
and girls. However, for any individual boy or girl, the rate of change (slope) may be
steeper or shallower than the evident “typical” rate of change.

To address the questions of interest, we need a formal way of representing the fact that each
child has an individual-specific trajectory.

6.2.2 Example 2: Vitamin E diet supplement and growth of guinea pigs
6.2.2.1 Data Context

The following data are reported by Crowder and Hand (1990, p. 27). The study concerned
the effect of a vitamin E diet supplement on the growth of guinea pigs. 15 guinea pigs were
given a growth-inhibiting substance at the beginning of week 1 of the study (time 0, before the
first measurement), and body weight was measured at the ends of weeks 1, 3, and 4. At the
beginning of week 5, the pigs were randomized into three groups of 5, and vitamin E therapy
was started. One group received zero doses of vitamin E, another received a low dose, and
the third received a high dose. Each guinea pig’s body weight (g) was measured at the end
of weeks 5, 6, and 7. The data for the three dose groups are plotted, in the plot below, with
each line representing the body weight of one pig.

dat <- read.table("./data/diet.dat", col.names=c("id", paste("bw.",c(1,3,4,5,6,7),sep=""), "
dat <- dat %>%

gather(Tmp,bw, bw.1l:bw.7) %>’

separate(Tmp,into=c('Var', 'time'), remove=TRUE)
dat$time <- as.numeric(dat$time)

dat$dose <- factor(dat$dose)
levels(dat$dose) <- c("Zero dose",' Low dose', 'High dose')

146

dat %>%
ggplot(aes(x = time, y = bw, col = dose)) +
geom_line(aes(group = id)) +
xlab('Weeks') +
ylab('Body Weight (g)') +
geom_smooth(lwd=2, se=FALSE) +
theme_minimal ()

“geom_smooth()~ using method = 'loess' and formula = 'y ~ x'

700

2 600 % / dose
s ~
° _p o m== Zero dose
P =
= P ~ «i//, == | ow dose
< /
B w === High dose
m /
500

6.2.2.2 Research Questions

The primary objective of the study was to

147

e Determine whether the growth patterns differed among the three groups.
As with the dental data, several features of the spaghetti plot are evident:

o For the most part, the trajectories for individual guinea pigs seem to increase overall over
the study period (although note pig 1 in the zero dose group). Guinea pigs in the same
dose group have different trajectories, some of which look like a straight line and others
of which seem to have a “dip” at the beginning of week 5, the time at which vitamin E
was added in the low and high-dose groups.

¢ The body weight for the zero dose group seems somewhat “lower” than those in the other
dose groups.

e It is unclear whether the rate of change in body weight on average is similar or different
across dose groups. It is unclear that the pattern for individual pigs or “on average” is
a straight line, so the rate of change may not be constant. Because vitamin E therapy
was not administered until the beginning of week 5, we might expect two “phases” in
the growth pattern, before and after vitamin E, making it possibly non-linear.

6.2.3 Example 3: Epileptic seizures and chemotherapy

A common situation is where the measurements are in the form of counts. A response in the
form of a count is by nature discrete—counts (usually) take only nonnegative integer values
0,1, 2, 3,..).

6.2.3.1 Data Context

The following data were first reported by Thall and Vail (1990). A clinical trial was conducted
in which 59 people with epilepsy suffering from simple or partial seizures were assigned at
random to receive either the anti-epileptic drug progabide (subjects 29-59) or an inert sub-
stance (a placebo, subjects 1-28) in addition to a standard chemotherapy regimen all were
taking. Because each individual might be prone to different rates of experiencing seizures,
the investigators first tried to get a sense of this by recording the number of seizures suffered
by each subject over the 8 weeks before administering the assigned treatment. It is common
in such studies to record such baseline measurements so that the effect of treatment for each
subject may be measured relative to how that subject behaved before treatment.

Following the commencement of treatment, each subject’s seizures were counted for four two-
week consecutive periods. The age of each subject at the start of the study was also recorded, as
it was suspected that the subject’s age might be associated with the effect of the treatment.

The first 10 rows of the long format data for the study are shown below.

148

require (MASS)
head(epil,10)

y trt base age V4 subject period lbase lage
1 5 placebo 11 31 0 1 1 -0.7563538 0.11420370
2 3 placebo 11 31 O 1 2 -0.7563538 0.11420370
3 3 placebo 11 31 O 1 3 -0.7563538 0.11420370
4 3 placebo 11 31 1 1 4 -0.7563538 0.11420370
5 3 placebo 11 30 O 2 1 -0.7563538 0.08141387
6 5 placebo 11 30 O 2 2 -0.7563538 0.08141387
7 3 placebo 11 30 O 2 3 -0.7563538 0.08141387
8 3 placebo 11 30 1 2 4 -0.7563538 0.08141387
9 2 placebo 6 25 0 3 1 -1.3624896 -0.10090768
10 4 placebo 6 25 0 3 2 -1.3624896 -0.10090768

6.2.3.2 Research Questions

The primary objective of the study was to

¢ Determine whether progabide reduces the rate of seizures in subjects like those in the
trial.

Here, we have repeated measurements (counts) on each subject over four consecutive obser-
vation periods for each subject. We would like to compare the baseline seizure counts to
post-treatment counts, where the latter are observed repeatedly over time following the initia-
tion of treatment. An appropriate analysis would best use this data feature in addressing the
main objective. Below is a boxplot of the change from baseline, separated by treatment group
(but ignores the repeated measures).

epil %>%
mutate(change = y - base) %>%
ggplot(aes(x = trt, y = change)) +
geom_boxplot () +
theme classic()

149

S
e —301
CU ‘
=
O
_60 -
. i
°
4 °
e
-90 s
placebo progabide

trt

Moreover, some counts are quite small; for some subjects, 0 seizures (none) were experienced
in some periods. For example, subject 31 in the treatment group experienced only 0, 3, or 4
seizures over the four observation periods. Pretending that the response is continuous would
be a lousy approximation of the true nature of the data! Thus, methods suitable for handling
continuous data problems like the first three examples would not be appropriate for data like
these.

A common approach to handling data in the form of counts is to transform them to some
other scale. The motivation is to make them seem more “normally distributed” with constant
variance, and the logarithm transformation is used to (hopefully) accomplish this. The desired
result is that methods usually used to analyze continuous measurements may be applied.

However, the drawback of this approach is that one is no longer working with the data on
the original scale of measurement, the number of seizures in this case. The statistical models
the “log number of seizures,” which is not particularly interesting or intuitive. New statistical
methods have recently been developed to analyze discrete repeated measurements like counts
on the original measurement scale.

6.2.4 Example 4: Maternal smoking and child respiratory health

Another common discrete data situation is where the response is binary; that is, the response
may take on only two possible values, which usually correspond to things like

e success or failure of a treatment to elicit a desired response
e presence or absence of some condition

150

It would be foolish to even try and pretend such data are approximately continuous!

6.2.4.1 Data Context

The following data come from a very large public health study, the Six Cities Study, undertaken
in six small American cities to investigate various public health issues. The full situation is
reported in Lipsitz, Laird, and Harrington (1992). The current study focused on the association
between maternal smoking and child respiratory health. Each of the 300 children was examined
once a year at ages 9-12. The response of interest was “wheezing status, a measure of the child’s
respiratory health, which was coded as either’no” (0) or “yes” (1), where “yes” corresponds to
respiratory problems. Also recorded at each examination was a code to indicate the mother’s
current level of smoking: 0 = none, 1 = moderate, 2 = heavy. The data for the first 5 subjects
are summarized below. Missing data are denoted by a “”.

Wheezing at

Smoking at age age
Subject City 9 10 11 12 9 10 11 12
1 Portage 2 2 1 1 1 0 0 0
2 Kingston 0 0 0 0 0 0 0 0
3 Portage 1 0 0 . 0 0 0
4 Portage . 1 1 1 . 1 0 0
5 Kingston 1 1 2 0 0 1

A simplified version of this data is available in R.

require (geepack)
data(ohio)
head(ohio, 10)

resp id age smoke
0 0 -2

© 0N O o> WN -
O O O O O O O o o
NNEFP, P, P2, =2, OO O
[
= N
O O O O O O OO oo

[N
o

151

6.2.4.2 Research Questions

The objective of an analysis of these data was to

e Determine how the typical “wheezing” response pattern changes with age
e Determine whether there is an association between maternal smoking severity and child
respiratory status (as measured by “wheezing”).

It would be pretty pointless to plot the responses as a function of age as we did in the continuous
data cases — here, the only responses are 0 or 1! Inspection of subject data suggests something
is happening here; for example, subject 5 did not exhibit positive wheezing until his/her
mother’s smoking increased in severity.

This highlights that this situation is complex: over time (measured here by the child’s age),
an important characteristic, maternal smoking, changes. Contrast this with the previous
situations, where the main focus is to compare groups whose membership stays constant over
time.

Thus, we have repeated measurements, which are binary to further complicate matters! As
with the count data, one might first think about summarizing and transforming the data to
allow methods for continuous data to be used; however, this would be inappropriate. As we
will see later, methods for dealing with repeated binary responses and scientific questions like
those above have been developed.

Another feature of these data is that some measurements are missing for some subjects. Specif-
ically, although the intention was to collect data for each of the four ages, this information
is not available for some children and their mothers at some ages; for example, subject 3 has
both the mother’s smoking status and wheezing indicator missing at age 12. This pattern
would suggest that the mother may have failed to appear with the child for this intended
examination.

A final note: In the other examples, units (children, guinea pigs, plots, patients) were assigned
to treatments; thus, these may be regarded as controlled experiments, where the investigator
has some control over how the factors of interest are “applied” to the units (through random-
ization). In contrast, in this study, the investigators did not decide which children would have
mothers who smoke; instead, they could only observe the smoking behavior of the mothers and
the wheezing status of their children. That is, this is an example of an observational study.
Because it may be impossible or unethical to randomize subjects to potentially hazardous cir-
cumstances, studies of issues in public health and the social sciences are often observational.

As in many observational studies, an additional difficulty is the fact that the thing of interest,
in this case, maternal smoking, also changes with the response over time. This leads to
complicated issues of interpretation in statistical modeling that are a matter of some debate.

152

6.3 R: Wide V. Long Format

In R, longitudinal data could be formatted in two ways.

Wide Format: When the observations times are the same for every unit (balanced data),
then every unit has a vector of observations of length m, and we can organize the unit’s data
into one row per unit, resulting in a data set with n rows and m columns that correspond to
outcome values (plus other columns that will correspond to an identifier variable and other
explanatory variables). See the simulated example below. The first column is an id column to
identify the units from each other, the next five columns correspond to the m = 5 observations
over time, and the next five columns correspond to a time-varying explanatory variable.

10
5

(wideD

© 00 ~NO O WN - E;co W ~NO U WN -
- -
O O 00 NO O WN -~ Q.

-
o

.57849534
.18647471
.81019236
.03778747
0.47364454
.20266436
.67346316
.61694724
.47184070
.04164016

y.1
.4100407
.8467906
1.3571810
1.0199928
.6113060
.6474944
.8235137
.8274177
.6868499
.5295013

x.2

-1.
. 717216522
.008583371
.020863907
.3563040200
.5569416375
.099649736
.091468575
.125490068
.840996844 -1.

y.2
.34321543

.17789644
.29790088
.58509726
.94553592
.44313504
.01242068
.61786316
.35821153
.54496445
x.3
044084705

data.frame(id = 1:n,

y.

1

y.3
.5232633
.0400565
.7761962
.2117450
.6712787
.0020810
.2320169
.3190720
.2568263
.6888688

x.4

.4587848
.3480238
.9924889
.2042637
.2985420
.6030863
.2035936
.4652250
.2503304

1681541

rnorm(n), y.2

y.4
.052829343
.542453539
.235001897
.483401904
.001143426
.348228908
.983035114
.265427433
.102128774
.045921587

x.5

.1526877
.8483097
.2564282
.2165144
.2093907
.7601944
.1475575
. 7628235
.5399445
.4670689

rnorm(n), y.3 =

y.5

.48165146
.24843630
.80134565

0.06145224

.39626716
.695634610
.835678330
.69783134
. 76948236
.01699081

rnorm(n), y.4 = rnorm(n)

x.1

.2042827
.9152467
.0240244
.0243878
.8845031
.5344297
.0199189
.4117536
.8385356
.3105107

Long Format: We'll need the data in long format for most data analysis. We must use a
long format when every unit’s observation times differ. Imagine stacking each unit’s observed

153

outcome vectors on top of each other. Similarly, we want to stack the observed vectors of any
other explanatory variable we might have on the individuals. In contrast to wide format, it is
necessary to have a variable to identify the unit and the observation time.

See below for the R code to convert a data set in wide format to one in long format. Hopefully,
the variable names are given in a way that specifies the variable name and the time order of
the values, suchasy.1,y.2,...y.5,x.1,x.2,...,x.5.

In the tidyr package, pivot_longer () takes the wide data, the columns (cols) you want to
make longer, and the names of two variables you want to create. The first (we use Tmp here)
is the variable name containing the variable names of the columns you want to gather. The
second (called Value) is the variable name that will collect the values from those columns. See
below.

require(tidyr)
pivot_longer(wideD, cols = y.1:x.5, names_to = 'Tmp', values_to = 'Value') %>% head()
A tibble: 6 x 3

id Tmp Value
<int> <chr> <dbl>

1 1y.1 0.410
2 1y.2 -0.343
3 1y.3 0.523
4 1y.4 -1.05
5 1y.5 1.48
6 1 x.1 -0.204

Then, we want to separate the Tmp variable into two variables because they contain information
about both the characteristic and time. We can use separate() to separate Tmp into Var and
Time, it will automatically detect the . as a separator.

pivot_longer(wideD, cols = y.l:x.5, names_to = 'Tmp', values_to = 'Value') %>%
separate(Tmp,into=c('Var', 'Time'), remove=TRUE) %>%
head ()

A tibble: 6 x 4
id Var Time Value
<int> <chr> <chr> <dbl>

1 1y 1 0.410
2 1y 2 -0.343
3 1y 3 0.523

154

4 1y 4 -1.05
5 1y 5 1.48
6 1 x 1 -0.204

Lastly, we want to have one variable called x and one variable called y', and we can get
that by pivoting the variableVarwider into two columns with the values that
come fromValue'.

pivot_longer(wideD, cols = y.l:x.5, names_to = 'Tmp', values_to = 'Value') %>%
separate(Tmp,into=c('Var', 'Time'), remove=TRUE) %>’
pivot_wider (names_from = 'Var', values_from = 'Value') %>
head ()

A tibble: 6 x 4

id Time y X
<int> <chr> <dbl> <dbl>
1 11 0.410 -0.204
2 12 -0.343 1.58
3 13 0.523 -1.04
4 14 -1.05 0.459
5 15 1.48 0.153
6 21 -0.847 0.915

6.4 Notation

In order to

¢ elucidate the assumptions made under different models and methods, and
e describe the models and methods more easily,

it is convenient to think of all outcomes collected on the same unit over time or another set of
conditions together so that complex relationships among them may be summarized.

Consider the random variable,

Y;; = the jth measurement taken on unit ¢, i=1,.,n,5=1,....,m
Consider the dental study data (Example 1) to make this more concrete. Each child was
measured 4 times at ages 8, 10, 12, and 14 years. Thus, we let 57 = 1,...,4; j index the

measurement order on a child. To summarize the information on when these times occur, we
might further define

155

t;; = the time at which the j measurement on unit i was taken.
Here, for all children (i = 1,...,27), t;; = 8,t;,, = 10, and so on for all children in the study.
Thus, t;; = t; for all « = 1,...,n. If we ignore the gender of the children for the moment,
the outcomes for the ¢th child, where ¢ ranges from 1 to 27, are Y,q,...,Y;,, taken at times
ti1s---, t;s. We may summarize the measurements for the ith child even more succinctly: define
the (4 x 1) random vector,

The vector elements are random variables representing the outcomes that might be observed
for child i at each time point. For this data set, the data are balanced because the observation
times are the same for each unit, and the data are regular because the observation times are
equally spaced apart. Most observational data is not balanced and is often irregular. We can
generalize our notation to allow for this type of data by changing m to m,, which captures the
total number of measurements for the ith unit,

Y,;; = the jth measurement taken on unit ¢, i=1,..,n,7=1..m;
The important message is that it is possible to represent the outcomes for the ith child in a
very streamlined and convenient way. Each child ¢ has its outcome vector, Y,. It often makes
sense to think of the data not just as individual outcomes Y;;, some from one child, some
from another according to the indices, but rather as vectors corresponding to children, the
units—each unit has associated with it an entire outcome vector.

We can also consider explanatory variables. If we have p explanatory variables, we’ll let the
value for the 1st variable, for the ith unit at the jth time, be represented as z;;,. That means
that for the ith unit, we can collect all of their values of explanatory variables (across time)
in a matrix,

Titn Tiz 0 Tyl

xA x cese l’
_ 321 122 2p

Xi - : : . :
LTim1 Tim2 ° Timp

These explanatory variables might be time-invariant such that we have a variable like the
treatment group. Alternatively, we might have explanatory variables that are time-varying,
such as age in the values observed at each time point may change.

156

6.4.1 Multivariate Normal Probability Model

We first discussed this in Chapter 2, so feel free to return to Random Vectors and Matrices.

When we represent the outcomes for the ith unit as a random vector, Y, it is useful to consider
a multivariate model such as the multivariate normal probability model.

The joint probability distribution that is the extension of the univariate version to a (m x 1)
random vector Y, each of whose components is normally distributed, is given by

fy) = ;M/QIE\’”2 exp{—(y —p) "X (y — n)/2}

(2m)

e This probability density function describes the probabilities with which the random
vector Y takes on values jointly in its m elements.

e The form is determined by the mean vector u and covariance matrix X.
The form of f(y) depends critically on the term
(y —mw)"S Hy —p)

The quadratic form of the term pops up in many common methods. You’ll see it in generalized
least squares (GLS) and the Mahalanobis distance as a standardized sum of squares. Read
the next section if you’d like to think more deeply about this quadratic form.

6.4.1.1 Quadratic Form (Optional)

The pdf of the multivariate normal pdf depends critically on the term
(y =)'y —p)

This is a quadratic form (in linear algebra), so it is a scalar function of the elements of
(y —p) and 71

If we refer to the elements of 71 as 07%, i.e.

gl . glm
2—1 — :
O.ml .. gmm
then we may write
(=TS Ny —p) =D o™ (y; —)y —)
j=1 k=1

Of course, the elements ¢/* will be complicated functions of the elements JJ2', o, of X, i.e. the
variances of the Y; and the covariances among them.

157

e This term thus depends on not only the squared deviations (y;— uj)Q for each element
in y (which arise in the double sum when j = k), but also on the crossproducts (yj —
,uj)(yk —). Each contribution of these squares and cross products is standardized by
values 7% that involve the variances and covariances.

e Thus, although it is quite complicated, one gets the suspicion that the quadratic form has
an interpretation, albeit more complex, as a distance measure, just as in the univariate
case.

To better understand the multivariate distribution, it is instructive to consider the special
case m = 2, the simplest example of a multivariate normal distribution (hence the name

bivariate).
Y, o2 o
() e ()5 (5)
2 Ha 012 O3

Using the inversion formula for a (2 x 2) matrix,

2
-1 _ 1 (03 —012)
=23 2 _ 2
0105 — 013 012 03

We also have that the correlation between Y; and Y, is given by

Here,

Using these results, it is an algebraic exercise to show that (try it!)

1 _1p2 {(% —11)° 4 (Y2 _2N2>2 2, (y1 — 1) (yo — N2>}
12

(y—m)T"E Wy —p) =
‘7% 03 01)

e One component is the sum of squared standardized values (z-scores)

(y; — N1>2 4 (yo — Mz)z

2 2
oy %)

This sum is similar to the sum of squared deviations in least squares, with the difference that
each deviation is now weighted by its variance. This makes sense-because the variances of Y;
and Y, differ, information on the population of Y; values is of a different quality than that
on the population of Y, values. If the variance is large, the quality of information is poorer;
thus, the larger the variance, the smaller the weight, so that information of higher quality
receives more weight in the overall measure. Indeed, this is like a distance measure, where
each contribution receives an appropriate weight.

158

¢ In addition, there is an extra term that makes it have a different form than just a sum
of weighted squared deviations:

(yl - N1) (?JQ — ,UQ)
01 02

—2p19

This term depends on the cross-product, where each deviation is again weighted by its variance.
This term modifies the distance measure in a way connected with the association between Y}
and Y, through their cross-product and correlation p;5. Note that the larger this correlation
in magnitude (either positive or negative), the more we modify the usual sum of squared
deviations.

« Note that the entire quadratic form also involves the multiplicative factor 1/(1 — p2,),
which is greater than 1 if |p;5| > 0. This factor scales the overall distance measure by
the magnitude of the association.

6.5 Failure of Standard Estimation Methods

6.5.1 Ordinary Least Squares

Imagine we have n units/subjects, and each unit has m observations over time. Conditional
on p explanatory variables, we typically assume a linear model for the relationship between
the explanatory variables and the outcome,

Yij = Bo+ Brijn + -+ Bpijy + €55
If we are using ordinary least squares to estimate the slope parameters, we assume the errors
. iid
represent independent measurement error, €;; ~ N (0, a?).

This can be written using vector and matrix notation with each unit having its outcome vector,

Y

19

Y, = X, + ¢, for each unit ¢

where €, ~ NV (0,0%I) and X is the observations for the explanatory variables for subject i with
m rows and p + 1 columns (a column of 1’s for the intercept plus p columns that correspond
to the p variables).

If we stack all of our outcome vectors Y (and covariate matrices X) on top of each other (think

Long Format in R),

Y =X3+¢

159

where € ~ N(0,0%I) so we are assuming that our errors and thus our data are independent
within and between each unit and have constant variance.

6.5.1.1 Estimation

To find the ordinary Least Squares (OLS) estimate Bo o we need to minimize the sum of
squared residuals, which can be written with vector and matrix notation,

(Y = Xp)T(Y —Xp)

Taking the derivative with respect to (8, 3y, ..., 8,), we get a set of simultaneous equations
expressed in matrix notation as

—2XTY 4 2XTXp5 =0

As long as X7X has an inverse, then the unique solution and our estimated parameters can
be found using

Bors = (XTX)'XTY

This estimator is unbiased in that it estimates the true value on average, E(f3 oLs) = B

Derivation:

E(BpLs) = (XTX)'XTE(Y)
= (XTX)"1XTX}3
=p
It also has a minimum variance of all unbiased, linear estimators IF the errors are independent
and have constant variance.

Derivation:

Cov(Byyg) = (XTX)1XT Cov(Y){(XTX) 1XT}T
= (XTX)'XT (o T) X (XTX) !
— 0_2 (XTx)—l

using Cov(AY) = ACov(Y)AT, which you can verify.

160

The OLS estimates of our coefficients are fairly good (unbiased), but the OLS standard errors
are wrong unless our data are independent. Since we have correlated repeated measures, we
don’t have as much “information” as if they were independent observations.

6.5.2 Generalized Least Squares

If you relax the assumption of constant variance, then the covariance matrix of ¢, and thus Y,
is

o2 0 0
2
o !
0 O o2,

For longitudinal data, this would allow the variability to change over time.

If you relax both the assumptions of constant variance and independence, then the covariance
matrix of €; and thus Y, is

m
2
N o 021 O3 Oom
i : : :
g g O'2
ml m2 m

For longitudinal data, this would allow the variability to change over time, and you can account
for dependence between repeated measures.

If we assume individual units are independent of each other (which is typically a fair as-
sumption), the covariance matrix for the entire vector of outcomes (for all units and their
observations over time) is written as a block diagonal matrix,

> 0 - 0
. 0 % - 0
O 0 - X%

n

161

6.5.2.1 Estimation

To find the Generalized Least Squares (GLS) estimator 3, we need to minimize the standard-
ized sum of squared residuals,

(Y —XB)TE7H(Y —Xp)

If 3 is known, taking the derivative with respect to 5y, 8y, ..., B,, we get a set of simultaneous
equations expressed in matrix notation as

—oXTy 'y +2XTy X3 =0

As long as X7y 'X has an inverse, then the generalized least squares (GLS) estimator
is

Bong = (XTE'X)IXTE Y

6.5.2.1.1 Alternative Derivation of GLS

An alternative approach is to consider transforming our Y and X by pre-multiplying by the
inverse of the lower triangular matrix from the Cholesky Decomposition of the covariance
matrix ¥ (L), and then find the OLS estimator.

We start by transforming our data so that Y* = LY, X*L !X, and ¢ = L 'e.

We can rewrite the model as,

LY =L 'X3+L e
= Y*'=X'B+¢

Then, using OLS on these transformed vectors, we get the generalized least squares estima-
tor,

E— BGLS — (X*TX*>71X*TY*
= (L 'X)TL'X) YL 'X)TL 'Y

162

6.5.2.2 Estimation Issues

Main Issue: ¥ is unknown!
The solution to this problem is to iterate. Estimate 5 and use that to estimate X. Repeat.

Other Issues:

o If the longitudinal data is balanced, there are m(m + 1)/2 parameters in ¥, to estimate.
That is a lot of parameters (!)
o If the longitudinal data is unbalanced, there is no common ¥, for every unit

The solution to these problems involves simplifying assumptions such as

o assuming the errors are independent (not a great solution)
 assuming the errors have constant variance (maybe not too bad, depending on the data)
o assuming there is some restriction/structure on the covariance function (best option)

We approximate the covariance matrix to get better estimates of (.

If we know the correlation structure of our data, we could use generalized least squares to
get better (better than OLS) estimates of our coefficients, and the estimated standard errors
would be more accurate.

The two main methods for longitudinal data that we’ll learn are similar to generalized least
squares in flavor.

However, we need models that are not only applicable to continuous outcomes but also binary
or count outcomes. Let’s first learn about the standard cross-sectional approaches to allow for
binary and count outcomes (generalized linear models). Then, we’ll be able to talk about
marginal models and mixed effects models.

6.6 Generalized Linear Models

When you have outcome data that is not continuous, we can’t use a least squares approach
as it is only appropriate for continuous outcomes. However, we can generalize the idea of
a linear model to allow for binary or count outcomes. This is called a generalized linear
model (GLM). GLM’s extend regression to situations beyond the continuous outcomes with
Normal errors (Nelder and Wedderburn 1972), and they are, in fact, a broad class of models
for outcomes that are continuous, discrete, binary, etc.

GLM’s requires a three-part specification:

1. Distributional assumption for Y
2. Systematic component with X
3. Link function to relate E(Y) with systematic component

163

6.6.1 Distributional Assumption

The first assumption you need to make to fit a GLM is to assume a distribution for the outcome
Y.

Many distributions you have learned in probability (normal, Bernoulli, binomial, Poisson)
belong to the exponential family of distributions that share a general form and statistical
properties. GLM’s are limited to this family of distributions.

One important statistical property of the exponential family is that the variance can be written
as a scaled function of the mean,

Var(Y) = ¢v(u) where E(Y) =pu

where ¢ > 0 is a dispersion or scale parameter and v(u) is a variance function of the mean.

6.6.2 Systematic Component

For a GLM, the mean or a transformed mean can be expressed as a linear combination of
explanatory variables, which we’ll notate as n:

n =0+ B8, X; + B2 X5 + -+ B,X,

You'll need to decide which explanatory variables should be used to model the mean. This
may include a time variable (e.g., age, time since baseline, etc.) and other unit characteristics
that are time-varying or time-invariant. We’ll refer to this as the mean model.

6.6.3 Link Function

Lastly, the chosen link function transforms the mean and links the explanatory variables to
that transformed mean.

g(w) =n =By + B Xy + B Xy + -+ B,X,

This link function, g(), allows us to use a linear function to model positive counts and binary
variables.

There are canonical link functions for each distribution in the exponential family.

Normal (linear regression)

e v(p) =1

164

* g(p) = p (identity)

Bernoulli/Binomial (m=1) (logistic regression)

e v(p) =p(l—p)
o g(p) =log(p/(1 — p)) (logit)

Binomial

o v(p) =mu(l—p)
* g(u) =log(p/(1— p)) (logit)

Poisson (poisson regression)

e v(p)=p
e g(p) = log(n) (log)

For the Six City Study, we can fit a model to predict whether or not a child has respiratory
issues as a function of age and maternal smoking, ignoring the repeated measures on each
child with the following R code. Notice we need to specify the mean model using the formula
notation resp ~ age + smoke, the family of the distribution we assume for our outcome
family = binomial and the link function ‘link = ’logit” we use to connect the linear model
to the mean. With this set of assumptions, we are fitting a logistic regression model.

summary (glm(resp ~ age + smoke, data = ohio, family = binomial(link = 'logit')))
Call:
glm(formula = resp ~ age + smoke, family = binomial(link = "logit"),

data = ohio)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.88373 0.08384 -22.467 <2e-16 *x*x

age -0.11341 0.05408 -2.097 0.0360 *
smoke 0.27214 0.12347 2.204 0.0275 *
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1829.1 on 2147 degrees of freedom

Residual deviance: 1819.9 on 2145 degrees of freedom
AIC: 1825.9

165

Number of Fisher Scoring iterations: 4

Please see my Introduction to Statistical Models Notes to refresh your memory of interpreting
logistic regression models.

6.7 Marginal Models

A marginal model for longitudinal data has a four-part specification, and the first three parts
are similar to a GLM.

6.7.1 Model Specification

1. A distributional assumption about Y;;. We assume a distribution from the expo-
nential family. We will only use this assumption to determine the mean and variance
relationship.

2. A systematic component which is the mean model, n,; = Xg;ﬂ, which get connected
to the mean through

3. a link function: The conditional expectation E(Y;;|z;;) = p,; is assumed to depend on
explanatory variables through a given link function (similar to GLM),

Q(Mz’j) =M = Xz;‘

there is no dependence of Y;; on x;, for j # k (warning:

Note: This implies that given x,;,
this might not hold if Y;; predicts x;;,).

The conditional variance of each Y., given explanatory variables, depends on the mean ac-

179
cording to
Var(yij‘xij) = ¢U(Mz’j)

Note: The ¢ (phi parameter) is a dispersion parameter and scales variance up or down.

4. Covariance Structure: The conditional within-subject association among repeated
measures is assumed to be a function of a set of association parameters « (and the
means ;). We choose a working correlation structure for Cor(Y;) from our fa-
miliar structures: Compound Symmetry/Exchangeable, Exponential/AR1, Gaussian,
Spherical, etc. See Autocorrelation Function in Chapter 3 for examples.

166

https://bcheggeseth.github.io/Stat155Notes/

Note: We may use the word “association” rather than correlation so that it applies in cases
where the outcome is not continuous.

Based on the model specification, the covariance matrix for Y, is

V, = A Cor(Y,)A}?

1

where A; is a diagonal matrix with Var(Y;;|X;;) = ¢v(u;;) along the diagonal. We use the
term working correlation structure to acknowledge our uncertainty about the assumed
model for the within-subject associations.

6.7.2 Interpretation

We typically discuss how a 1 unit increase in an explanatory variable impacts the mean,
keeping all other variables constant.

In a marginal model, we explicitly model the overall or marginal mean, F(Y;;|X;;).

For a continuous outcome (with identity link function), the expected response for the value of

E(Y;;|X;; =) =By + iz

The expected response for value of X,;; =z +11is

E(Y,;|X;;=2+1) =6y + Bi(z+1)

The difference is
BE(Y,| X, =2 +1)— E(Y;],X;; =)
= By + B1(x +1) = (By + Brz) = B4

Therefore, in the context of a marginal model, 8, has the interpretation of a population mean
change.

A 1-unit increase in X leads to a f; increase in the overall mean response, keeping all other
variables constant.

167

6.7.3 Estimation

To estimate the parameters, we will use generalized estimating equations (GEE). We want
to minimize the following objective function (a standardized sum of squared residuals),

SV -) TVEY,)

i=1

T).

treating V; as known and where p, is a vector of means with elements y,; = g_l(xij

Using calculus, it can be shown that if a minimum exists, it must solve the following generalized
estimating equations,

where D; = O, /0 is the gradient matrix.

Depending on the link function, there may or may not be a closed-form solution. If not,
the solution requires an iterative algorithm.

Because GEE depends on both 3, a (parameters for the working correlation matrix) and ¢
(variance scalar), the following iterative two-stage estimation procedure is required:

Step 1. Given current estimates of « and ¢, V; is estimated, and an updated estimate of 3 is
obtained as the solution to the generalized estimating equations.

Step 2. Given the current estimate of 5, updated estimates of o and ¢ are obtained from the
standardized residuals

Yi;— ﬁi]‘
U(ﬂij)

eij -

Step 3. We iterate between Steps 1 and 2 until convergence has been achieved (estimates for
B, a, and ¢ don’t change).

Starting or initial estimates of S can be obtained assuming independence.

Note: In estimating the model, we only use our assumption about the mean model,
T

g(:uij) =M = X5

and the covariance model of the observations,

168

V, = A2Cor(Y,)A}?

1

where A, is a diagonal matrix with Var(Y;;|X;;) = ¢v(y,;) along the diagonal.

6.7.3.1 R: Three GEE R Packages

There are three packages to do this in R, gee, geepack, and geeM.

We will use geeM when we have large data sets because it is optimized for large data. The
geepack package is nice as it has an anova method to help compare models. The gee package
has some nice output.

The syntax for the function geem() in geeM package is
geem(formula, id, waves = NULL, data, family = gaussian, constr = "independence", Mv = 1)

o formula: Symbolic description of the model to be fitted

e id: Vector that identifies the clusters

o data: Optional dataframe

o family: Description of the error distribution and link function

e constr: A character string specifying the correlation structure. Allowed structures

%

are: “independence”, “exchangeable” (equal correlation), “arl” (exponential decay), “m-
dependent” (m-diagonal), “unstructured”, “fixed”, and “userdefined”.
e Myv: for “m-dependent”, the value for m.

require(geeM)
Loading required package: geeM

Loading required package: Matrix

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':

expand, pack, unpack

169

summary (geem(resp ~ age + smoke, id = id, data = ohio, family = binomial(link = 'logit'), co

Estimates Model SE Robust SE wald P
(Intercept) -1.8980 0.10960 0.11470 -16.550 0.00000
age -0.1148 0.05586 0.04494 -2.554 0.01066
smoke 0.2438 0.16620 0.17980 1.356 0.17520

Estimated Correlation Parameter: 0.3992
Correlation Structure: aril
Est. Scale Parameter: 1.017

Number of GEE iterations: 3
Number of Clusters: 537 Maximum Cluster Size: 4
Number of observations with nonzero weight: 2148

The syntax for the function geeglm() in geepack package is

geeglm(formula, family = gaussian, data, id, zcor = NULL, constr, std.err = 'san.se')

e formula: Symbolic description of the model to be fitted

e family: Description of the error distribution and link function

e data: Optional dataframe

e id: Vector that identifies the clusters

e contr: A character string specifying the correlation structure. The following are permit-
W W

ted: “independence”, “exchangeable”, “arl”, “unstructured” and “userdefined”
e zcor: Enter a user defined correlation structure

require (geepack)

summary (geeglm(resp ~ age + smoke, id = id, data = ohio, family = binomial(link = 'logit'),
Call:
geeglm(formula = resp ~ age + smoke, family = binomial(link = "logit"),
data = ohio, id = id, corstr = "arl")
Coefficients:

Estimate Std.err Wald Pr(>|W|)
(Intercept) -1.90218 0.11525 272.409 <2e-16 *xx*
age -0.11489 0.04539 6.407 0.0114 *
smoke 0.23448 0.18119 1.675 0.1956

170

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Correlation structure = arl
Estimated Scale Parameters:

Estimate Std.err
(Intercept) 1.021 0.1232
Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.491 0.06733
Number of clusters: 537 Maximum cluster size: 4

The syntax for the function gee() in gee package is

gee(formula, id, data, family = gaussian, constr = 'independence',,fMv)
e formula: Symbolic description of the model to be fitted
o family: Description of the error distribution and link function
e data: Optional dataframe
e id: Vector that identifies the clusters
e constr: Working correlation structure: “independence”, “exchangeable”, “AR-M”, “un-

structured”
o Mv: order of AR correlation (AR1: Mv = 1)

require(gee)

Loading required package: gee

summary (gee(resp ~ age + smoke, id = id, data = ohio, family = binomial(link = 'logit'), cor

Beginning Cgee S-function, Q(#) geeformula.q 4.13 98/01/27

running glm to get initial regression estimate

(Intercept) age smoke
-1.8837 -0.1134 0.2721

171

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: AR-M , M =1
Call:

gee(formula = resp ~ age + smoke, id
corstr = "AR-M", Mv = 1)

Summary of Residuals:
Min 1Q Median 3Q Max
-0.1939 -0.1586 -0.1439 -0.1179 0.8821

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust =z
(Intercept) -1.8982 0.10962 -17.316 0.11468 -16.552
age -0.1148 0.05586 -2.054 0.04494 -2.554
smoke 0.2438 0.16620 1.467 0.17983 1.356

Estimated Scale Parameter: 1.017
Number of Iterations: 3

Working Correlation

(.11 [,21 [,3] [,4]
[1,] 1.00000 0.3990 0.1592 0.06352
[2,] 0.39900 1.0000 0.3990 0.15920
[3,] 0.15920 0.3990 1.0000 0.39900
[4,] 0.06352 0.1592 0.3990 1.00000

6.7.3.2 Properties of Estimators

We acknowledge that our working covariance matrix V, only approximates the true underlying
covariance matrix for Y, but it is wrong.

Despite incorrectly specifying the correlation structure,

. BmconﬁmﬁntOmﬁnmgﬂmxWﬁhh@hpmbﬂﬂﬁy@Ecbﬁmoﬂwtuwﬁﬂﬂvmybnx
samples) no matter whether the within-in subject associations are correctly modeled.

172

id, data = ohio, family = binomial(link = "logit"),

o In large samples, the sampling distribution of B is multivariate normal with mean § and
the covariance is a sandwich, Cov() = B~'M B~! where the bread B is defined as

B=> DIV;'D,
=1
and the middle (meat or cheese or filling) M is defined as

M =) DI'V;'Cou(Y,V;'D,
i=1

1=

We can plug in estimates of the quantities and get

where

and

and @(Yi) = (Y, —p)(Y; — ﬁz>T

This is the empirical or sandwich robust estimator of the standard errors. It is valid even
if we are wrong about the correlation structure.

Fun fact: If we happen to choose the right correlation/covariance structure and V, = %,

~

where ¥, = Cov(Y,), then Cov(8) = B~L.

Since we model the conditional expectation E(Y;;|x;;) = ;; with

— T
9(%7‘) = Xijﬁa

we can only make overall population interpretations regarding mean response at a given value
of x;;.

We can compare two lists of x values, x* and x and see how that impacts the population mean
via the link function g(u),

g(u*) —g(p) =xTp—x"p

173

6.7.4 Model Selection Tools and Diagnostics

The model selection tools we use will be similar to those used in Stat 155. To refresh your
memory of how hypothesis testing can be used for model selection, please see my Introduction
to Statistical Models Notes.

6.7.4.1 Hypothesis Testing for Coefficients (one at a time)

This section s similar to the t-tests in Stat 155.

To decide which explanatory variables should be in the model, we can test whether 3, = 0 for
some k. If the slope coefficient were equal to zero, the associated variable is essentially not
contributing to the model.

In marginal models (GEE), the estimated covariance matrix for B is given by the robust

~

sandwich estimator. The standard error for 3, is the square rooted values of the diagonal
of this matrix corresponding to ;.. This is reported in the summary output for Robust SE.

To test the hypothesis H, : 5, = 0 vs. Hy : 5, # 0, we can calculate a z-statistic (referred to
as a Wald statistic),

_ b
Z=———=—
SE(By)

With GEE, the geem() function provides wald statistics and associated p-values for testing
Hy : B, = 0. These p-values come from a Normal distribution because we know that is the
asymptotic distribution for these estimators.

geemod <- geem(resp ~ age + smoke, id = id, data = ohio, family = binomial(link = 'logit'),

summary (geemod) #look for Robust SE and wald

Estimates Model SE Robust SE wald P
(Intercept) -1.8800 0.11480 0.11390 -16.510 0.000000
age -0.1134 0.04354 0.04386 -2.585 0.009726
smoke 0.2651 0.17700 0.17770 1.491 0.135900

Estimated Correlation Parameter: 0.3541
Correlation Structure: exchangeable
Est. Scale Parameter: 0.9999

Number of GEE iterations: 3

Number of Clusters: 537 Maximum Cluster Size: 4
Number of observations with nonzero weight: 2148

174

https://bcheggeseth.github.io/Stat155Notes/
https://bcheggeseth.github.io/Stat155Notes/

geemod$beta/sqrt (diag(geemod$var)) #wald statistics by hand

(Intercept) age smoke
-16.510 -2.585 1.491

6.7.4.2 Hypothesis Testing for Coefficients (many at one time)

This section s similar to the nested F-tests in Stat 155.

To test a more involved hypothesis H, : L5 = 0 (to test whether multiple slopes are zero or a
linear combo of slopes is zero), we can calculate a Wald statistic (a squared z statistic),

W2 = (L3)T(LCov(B)LT) " (LB)

We assume the sampling distribution is approximately x? with df = # of rows of L to calculate
p-values (as long as n is large).

This model selection tool is useful when you have a categorical variable with more than two
categories. You may want to check to see if we should exclude the entire variable or whether
a particular category has an impact on the model.

With the data example, let’s look at smoking. It is only a binary categorical variable, but
let’s run the hypothesis test with the example code from above. So, in this case, we let the
matrix L be equal to a 1 x 3 matrix with 0’s everywhere except in the 3rd column so that we’d
test: Hy : 35 = 0. Even though we used a different test statistic, we ended up with the same
p-value as the approach above.

summary (geemod)

Estimates Model SE Robust SE wald P
(Intercept) -1.8800 0.11480 0.11390 -16.510 0.000000
age -0.1134 0.04354 0.04386 -2.585 0.009726
smoke 0.2651 0.17700 0.17770 1.491 0.135900

Estimated Correlation Parameter: 0.3541
Correlation Structure: exchangeable
Est. Scale Parameter: 0.9999

Number of GEE iterations: 3

Number of Clusters: 537 Maximum Cluster Size: 4
Number of observations with nonzero weight: 2148

175

o
I

geemod$beta
geemod$var

=
I

(L = matrix(c(0,0,1) ,nrow=1))

[,11 [,2]1 [,3]
[1,] 0 0 1

L%*%b # Lb estimate

[,1]
[1,] 0.2651

(se = sqrt(diag(L%*%W%*%t(L)))) # Robust SE for Lb

[1] 0.1777

957 Confidence Interval (using Asymptotic Normality)
L/*%b - 1.96%se

[,1]
[1,] -0.0833

L%*%b + 1.96%se

[,1]
[1,] 0.6135

Hypothesis Testing

w2 <- as.numeric(t(L%x%b) %x% solve(L %x% W %% t(L))%x% (L%*%b)) ## should be approzimatel
1 - pchisq(w2, df = nrow(L)) # p-value

[1] 0.1359

176

So, the p-value, the probability of getting a test statistic as or more extreme assuming the
null hypothesis is true, is around 13%. We do not have enough evidence to reject the null
hypothesis. This leads us to believe that smoking could be removed from the model.

Let’s test whether H, : 3, = By = 0, then we let the matrix L be equal to a 2 x 3 matrix with
0’s everywhere except in the 2nd column in row 1 and 3rd column in row 2.

summary (geemod)

Estimates Model SE Robust SE wald P
(Intercept) -1.8800 0.11480 0.11390 -16.510 0.000000
age -0.1134 0.04354 0.04386 -2.585 0.009726
smoke 0.2651 0.17700 0.17770 1.491 0.135900

Estimated Correlation Parameter: 0.3541
Correlation Structure: exchangeable
Est. Scale Parameter: 0.9999

Number of GEE iterations: 3
Number of Clusters: 537 Maximum Cluster Size: 4
Number of observations with nonzero weight: 2148

o
I

geemod$beta
geemod$var

=
]

(L = matrix(c(0,1,0,0,0,1),nrow=2,byrow=TRUE))

[,11 [,2]1 [,3]
[1,] 0 1 0
[2,] 0 0 1

L%*%b #Lb estimate

[,1]
[1,] -0.1134
[2,] 0.2651

(se = sqrt(diag(Ly%*%W/*%t(L)))) # Robust SE for Lb

[1] 0.04386 0.17775

177

95} Confidence Interval (using Asymptotic Normality)
L/*%b - 1.96%se

[,1]
[1,] -0.1993
[2,] -0.0833

L%*%b + 1.96%*se

[,1]
[1,] -0.02743
[2,] 0.61346

Hypothesis Testing
w2 <- as.numeric(t(L%*%b) %x*% solve(L %*% W %*x% t(L))%*% (L%*%b)) ## should be approzimatel

1 - pchisq(w2, df = nrow(L)) #p-value

[1] 0.01092

We have evidence to suggest that at least one of the variables, age or smoking, has a statistically
significant effect on the outcome. As we saw above, we know it must be age, but the model
with age and smoking is better than a model with no explanatory variables.

6.7.4.3 Diagnostics

For any linear model with a quantitative outcome and at least one quantitative explanatory
variable, we should check to see if the residuals have a pattern.
Ideally, the residual plot should have no obvious pattern, plotting the residuals on the y-axis

against a quantitative x-variable. See some example code below.

resid = mod$y - predict(mod)
plot(predict(mod) ,resid)

If there is a pattern, then we are systematically over or under-predicting, and we can use that
information to incorporate non-linearity to improve the model.

178

6.8 Mixed Effects

Let’s return to a continuous outcome setting. Consider the mean response for a specific
individual (¢th individual/unit) at a specific observation time (jth time).

pi; = E(Y;;] Explanatory Variables, Time)

o If the mean is constant across observation times (horizontal trend line) and other
variables (no X'’s), and the same across all individuals,

Hij = M

o If the mean changes linearly across observation times and no other variables impact
the mean, and it is the same across all individuals,

tij = Bo + Biti;
o If the mean increases linearly with an time-varying explanatory variable and it is

the same across all individuals,
tij = Bo + Brzi;

6.8.1 Individual Intercepts

In any situations listed above, individuals may have their own intercept, their own starting
level. We can notate that by adding b, as an individual deviation from the mean intercept,

pij =k +b;
M5 = By +b; + 51%’
tij = Bo + b; + Brz;
We could estimate the individual intercepts to find b,, the difference between the overall mean

intercept and an individual’s intercept. If b, = —2, the individual ¢ starts -2 units lower in
their outcome responses than the average.

179

6.8.1.1 First Approach: Separate Models

Let’s use the dental data to figure out the overall mean intercept and estimate each deviation

from that intercept. The first approach is to fit a separate linear model for each person and

look at the intercepts.

dental <- read.table("./data/dental.dat", col.names=c("obsno", "id", "age", "distance", "gen

int <- sapply(unique(dental$id),function(i) lm(distance~age, data = dental[dental$id == i,]):
mean (int) #mean intercept

[1] 16.76

int-mean(int) #estimated b_i

(Intercept) (Intercept) (Intercept) (Intercept) (Intercept) (Intercept)

0.4889 -2.5611 -2.3611 2.8889 2.8389 0.2389
(Intercept) (Intercept) (Intercept) (Intercept) (Intercept) (Intercept)
0.1889 4.6889 1.3389 -3.2111 2.1889 0.5389
(Intercept) (Intercept) (Intercept) (Intercept) (Intercept) (Intercept)
-1.9111 -0.7611 7.9389 -3.1111 2.1889 -1.8111
(Intercept) (Intercept) (Intercept) (Intercept) (Intercept) (Intercept)
2.9889 -2.3611 4.4889 3.2889 -3.5111 -13.9611
(Intercept) (Intercept) (Intercept)
2.3389 -3.2611 0.1889

However, this stratification approach also allows everyone to have their own slope for age,
which we may not want to do. If there is some common growth across persons, we’d like to
borrow information across all persons and fit only one model.

6.8.1.2 Second Approach: Fixed Effects Models

To estimate a model with one fixed slope for everyone that allows for individual intercepts,
we fit a model often termed a fixed effects model. In this model, we include an indicator
variable for every individual id to allow for individual intercepts. This can be quite difficult

if we have a large sample size because we are estimating one parameter per person or unit.

lm(distance ~ age + factor(id), data = dental)

180

Call:

Im(formula = distance ~ age + factor(id), data = dental)
Coefficients:
(Intercept) age factor(id)2 factor(id)3 factor(id)4
14.11 0.66 1.62 2.37 3.50
factor(id)5 factor(id)6 factor(id)7 factor(id)8 factor(id)9
1.25 -0.25 1.62 2.00 -0.25
factor(id)10 factor(id)11l factor(id)12 factor(id)13 factor(id)i14
-2.88 5.00 6.37 2.00 2.87
factor(id)15 factor(id)16 factor(id)17 factor(id)18 factor(id)19
5.25 1.62 5.00 2.37 2.50
factor(id)20 factor(id)21 factor(id)22 factor(id)23 factor(id)24
3.75 8.12 2.25 2.87 2.87
factor(id)25 factor(id)26 factor(id)27
3.50 4.50 1.62

6.8.1.3 Third Approach: Random Effects Models

An alternative way for individuals to have their own intercept is to assume a probability
distribution for the $ b_i$’s such as N (0, 07) and estimate the variability,o?. This is a random
intercept model,

}/;,Jzﬂo—i_bz"i_ﬁlm”‘f'ﬁ”, bz ”JN(O,O'g),E lf’l\q N(0,0’g),

]

where €,

; and b; are independent for any ¢ and j.

library(lme4)

summary (lmer (distance ~ age + (1|id), data = dental))

Linear mixed model fit by REML ['lmerMod']

Formula: distance ~ age + (1 | id)
Data: dental
REML criterion at convergence: 447
Scaled residuals:
Min 1Q Median 3Q Max

-3.665 -0.535 -0.013 0.487 3.722

181

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 4.47 2.11
Residual 2.05 1.43
Number of obs: 108, groups: id, 27

Fixed effects:

Estimate Std. Error t value
(Intercept) 16.7611 0.8024 20.9
age 0.6602 0.0616 10.7

Correlation of Fixed Effects:
(Intr)
age -0.845

In the output above, you’ll see information about the standardized or scaled residuals.

Below it, you’ll see information on the random effects. In our case, we have a random intercept
for each individual that we allowed by adding + (1 | id) to the formula. The 1 indicates in-
tercept, ' |indicates conditional on, andidrefers to the variable calledid. We as-
sumed that b, ~ N(0,07) and it has estimated 67 = 4.472, 5, = 2.115. Additionally, we have
assumed that our errors are independent with constant variance, 52 = 2.049, ¢, = 1.432.

Lastly, we have our fixed effects, the parameters we don’t assume are random, S, and f;.

Those estimates are Bo =16.76 and 51 = 0.66.

Now with this random effects model, the addition of a random intercept has induced correlation
between observation within an individual because they now share an intercept.

In fact, assuming the model is true,

Cov(Y;;,Yy) = Cov(By + b, + By + €5, Bo + b; + Brzy + €)

- CO’U(bi + 67;]', bz + 6il>

= Couv(b;,b;) + Cov(b,, €;;) + Cov(b;, €;;) + Cov(e;;, €;1)

(2 79

=074+0+0+0

Cor(Y,;.,Y;) =

Cov(

Y,

179

Vi)

YK

2
Ty

- Var(vVar(vy)

\/Var(ﬁo +b; + B X+ €)Var(By + b, + B Xy +€)

182

2
9y

B \/Var(bi +€;)Var(b; + €;)

%
(0 + 02
__ %

(03 +02)

for j # [and this does not depend on j or [or j —[. The correlation is constant for any time
lags (exchangeable/compound symmetric).

6.8.2 Individual Slopes
Since we have longitudinal data, we can observe each individual’s trajectory over time. Every-
one has their own unique growth rate. If that growth rate can be explained with an explanatory

variable, we could use an interaction term to allow for that unique growth. Otherwise, we could
allow each individual to estimate their own slope.

6.8.2.1 Second Approach: Fixed Effects Models

One could use a fixed effects model and use an interaction term with the id variable to estimate
each individual slope, but that is not sustainable for larger data sets.

Im(distance ~ age*factor(id), data = dental)

Call:
Im(formula = distance ~ age * factor(id), data = dental)

183

Coefficients:

(Intercept) age factor(id)2 factor(id)3
1.73e+01 3.75e-01 -3.05e+00 -2.85e+00
factor(id)4 factor(id)5b factor(id)6 factor(id)7
2.40e+00 2.35e+00 -2.50e-01 -3.00e-01
factor(id)8 factor(id)9 factor(id) 10 factor(id)11
4.20e+00 8.50e-01 -3.70e+00 1.70e+00
factor(id)12 factor(id)13 factor(id)14 factor(id) 15
5.00e-02 -2.40e+00 -1.25e+00 7.45e+00
factor(id) 16 factor(id) 17 factor(id)18 factor(id)19

-3.60e+00 1.70e+00 -2.30e+00 2.50e+00
factor(id)20 factor(id)21 factor(id)22 factor(id)23
-2.85e+00 4.00e+00 2.80e+00 -4.00e+00
factor(id)24 factor(id)25 factor(id)26 factor(id)27
-1.45e+01 1.85e+00 -3.75e+00 -3.00e-01
age:factor(id)2 age:factor(id)3 age:factor(id)4 age:factor(id)b
4.25e-01 4.75e-01 1.00e-01 -1.00e-01
age:factor(id)6 age:factor(id)7 age:factor(id)8 age:factor(id)9
-1.32e-15 1.75e-01 -2.00e-01 -1.00e-01
age:factor(id)10 age:factor(id)1l age:factor(id)12 age:factor(id)13
7.50e-02 3.00e-01 5.75e-01 4.00e-01
age:factor(id)14 age:factor(id)15 age:factor(id)16 age:factor(id)17
3.75e-01 -2.00e-01 4.75e-01 3.00e-01
age:factor(id)18 age:factor(id)19 age:factor(id)20 age:factor(id)21
4.25e-01 1.47e-15 6.00e-01 3.75e-01
age:factor(id)22 age:factor(id)23 age:factor(id)24 age:factor(id)25
-5.00e-02 6.25e-01 1.58e+00 1.50e-01
age:factor(id)26 age:factor(id)27
7.50e-01 1.75e-01

6.8.2.2 Third Approach: Random Effects Models

A more efficient way to allow individuals to have their own slopes is to assume a probability
distribution for the slopes (and typically intercepts) by assuming the vector of individual
intercept and slope is bivariate Normal with covariance matrix G, (b;,b;1) ~ N(0,G). This
is a random slope and intercept model,

X N(0,02),

Yz‘j = (By + bip) + (81 + bﬂ)f’?zj + €55 (bigs bj1) ~ N(0,G), €

ij

where €,; and (b, b;;) are independent of each other for any 7 and j.

summary (lmer (distance ~ age + (agelid), data = dental))

Linear mixed model fit by REML ['lmerMod']
Formula: distance ~ age + (age | id)
Data: dental

REML criterion at convergence: 442.6

Scaled residuals:

Min 1Q Median 3Q Max

184

-3.223 -0.494 0.007 0.472 3.916

Random effects:

Groups Name Variance Std.Dev. Corr
id (Intercept) 5.4166 2.327

age 0.0513 0.226 -0.61
Residual 1.7162 1.310

Number of obs: 108, groups: id, 27

Fixed effects:

Estimate Std. Error t value
(Intercept) 16.7611 0.7753 21.62
age 0.6602 0.0713 9.27

Correlation of Fixed Effects:
(Intr)
age -0.848

In the output above, you’ll see information about the standardized or scaled residuals.

Below it, you’ll see information on the random effects. In our case, we have a random intercept
and a random slope for age for each individual that we allowed by adding + (age | id) to the
formula. We might read (age | id) as we want to estimate slope | indicates conditional on,
and id refers to the variable called id. We assumed that (b,4,b;1) ~ N(0,G). The estimated
covariance matrix G is

G- 5.41 —0.61 % 2.32 % 0.22
U —0.61%2.32%0.22 0.05

Additionally, we have assumed that our errors are independent with constant variance, 52 =
1.72, 6, = 1.31.

Lastly, we have our fixed effects, the parameters we don’t assume are random, 3, and ;. Those
estimates are Bo = 16.76 and Bl = 0.66. You’ll notice that these estimates did not change
much at all by adding a random intercept. This will more often happen when modeling a
continuous outcome (not when modeling a binary or count outcome).

6.8.3 Multi-level or Hierarchical Model

We can write the random intercept and slope model by creating layers of models. We can
write the model for the mean as the level 1 model

185

pij = Bio + BinX;; Level 1
where the individual intercepts and slopes can be written as a level 2 model,

and/or
,87;1 - 61 + b“ Level 2

where b;5 ~ N@ﬂ'&), b ~ N<077—12)7 Cov(d,0,0;1) = Tor-

This is often called a multi-level or hierarchical model in that the model is written with
more than one level of models.

Combine the levels by plugging in the second level into the first level.

Yii = Bo+bio+ (B + 1)z + €

= (Bo + B1xi;) + (bjgxi; + big) + €55

= Fixed effects + Random effects + Error

This composite model is often called a mixed effects model because there are fixed-
parameter effects and random parameter effects.

6.8.4 Mixed Effects Model

In general, we can write a mixed-effects model for our outcome vector,

Y, =X,8+7Zb, +¢

= Fixed effects + Random effects + textError

mean model between unit variation within unit variation

where X, is the design matrix for the fixed effects, Z, is the design matrix for the random
effects (a subset of columns of X;), ¢, ~ N(0,%), and b, ~ N(0,G).

E(Y;)=EX;8+Zb, +¢,)

186

=X;8

Cov(Y;) = Cov(X,8+ Z,b;, +¢;)
= COU(ZZbZ + 6i)

Assuming b, and ¢; are independent, then
V, =Cov(Y;) = Cou(Z,;b,;) + Couv(e;)

~Z,GZT + %

Since b; and ¢; are almost always assumed Normal, then
Y, ~ N(X,,Z,GZT + %)

6.8.5 History

The origins of mixed effects models go back to R.A. Fisher work under the analysis of variance
(ANOVA) paradigm in the 1910-1930’s.

o FEarliest mixed effects model: random intercept model

¢ Work continued in the ANOVA framework until 1970’s

o Mixed effects models in a linear model framework are based on the ANOVA paradigm
e Seminal paper by Harville in 1977

o Highly cited mixed models paper by Laird and Ware in 1982

6.8.6 Interpretation

We typically discuss how a 1 unit increase in a variable in X impacts the mean, keeping all
other variables constant.

With random effects, this means interpreting the change within a unit or subject.

The expected response, given subject’s random effects, is

187

For the sake of simplicity, let’s consider the random intercept model,

E(Y;;1b;) = By + b; + 81X,
The expected response for value of X,;; =z is
E(Ylb;, Xy =) = By + b, + 7
The expected response for value of X;; =z +1is

E(Ylb;, X;j =2 +1) =By + b+ B1(z + 1)

The difference is in the expected response for individual ¢ with random effect b, is,

E(Yz‘j|biaX¢ =r+1)— E(Yij|biaXi =)
=By +b;+Bi(x+1) = (By+b; + 7)) = B4

This means we can give a subject-specific interpretation!
We can also consider the overall or marginal mean, E(Y};).

First, a definition of conditional expectation in the discrete setting,

E(Y[B=b)=) b-P(Y =y|B=b)
b

Then we can show that

E(Y) = E(E(Y|B=b))

The iterated expectation also holds for continuous random variables.

We can also consider the overall or marginal mean, E(Y};).

E(Y;;) = E(E(Yylb;)) = By + 81X

The expected response for value of X;; =z is

E(Y,|X;; =) = By + Bz

The expected response for value of X;; =z +1is

188

EY, | X,y =2+1) =5+ B(z+1)

The difference is
(Yij’Xij =r+1)— E(Y%jLXij =)
=By + Bz +1) = (By + B1z) = B4

Therefore, in the context of a linear mixed effects model, ; has the interpretation of the
subject-specific change as well as the population mean change.

A 1-unit increase in X leads to a (3, increase in the subject’s mean response, keeping all other
variables constant.

A 1-unit increase in X leads to a [3; increase in the overall mean response, keeping all other
variables constant.

6.8.7 Estimation
6.8.7.1 Maximum Likelihood Estimation

Mixed Effects Models require specifying the entire distribution. We assume probability models
for the random effects and the errors, and thus we could use maximum likelihood estima-
tion to find estimates for our slopes.

If we specify the REML argument in lmer as REML = FALSE, then the lmer function will
maximize the log-likelihood function (based on Normal assumptions for the errors and random
effects),

m*n

l = log(2m) — = Zlog A\

—f{Z —X,8)TVity, = X,;8)}

where V, is the composite covariance matrix.

o Estimates of beta’s are unbiased if the model is correct (random effects and mean
model).

¢ All parameter estimates are consistent if the model is correct.

o All parameter estimates are asymptotically unbiased; as n — oo, they become unbi-
ased (if model is correct).

o Estimates are asymptotically Normal; as n — oo, the sampling distribution becomes
more Normal.

o Estimates of variance of random effects are biased with finite n.

189

6.8.7.2 Restricted Maximum Likelihood Estimation

Patterson and Thompson (1971) and Harville (1974) provided technical solutions to the issues
of maximum likelihood. They suggested maximizing the likelihood of observing the sample
residuals rather than the sample data. This is referred to as restricted maximum likelihood
or REML and is implemented in lmer by default when REML = TRUE.

REML Algorithm:

o Estimate fixed effects using OLS.
e Write down the likelihood of residuals in terms of residuals and variance parameters.
e Then maximize likelihood with respect to variance parameters.

Another REML Algorithm:

o Split the likelihood into one part about the mean and one part about the variance.
o First, maximize the variance part to get estimates of the variance parameters
e Then maximize the part about the mean using the estimated variance.

After some complicated mathematics, you ultimately end up maximizing the following with
respect the parameters of V,

m xn

1 n
[=— 5 log(2m) — 3 ;log |V,

—% { (y; — XiB>TV;1(Yi - XzB)}

i=1

1 n
Ty7—1
—510g|Z;Xi \& Xz|

and 3 = (> XV X)) XTV,Y,) are the GLS estimates.
Advantages of REML

¢ Less bias in variance estimators.
e (3 is still unbiased as long as the model is correct.

Disadvantages of REML

¢ You can only compare models that differ in their variance components with REML.
¢ You cannot compare models with differing fixed effects because you didn’t maximize
the full information (use ML for this).

190

6.8.8 Model Selection
6.8.8.1 Hypothesis Testing for Fixed Effects (one at a time)

To decide which fixed effects should be in the model, we can test whether 3, = 0.
The estimated covariance matrix for @ is
n

) - {3oxrvx |

=1

The standard error for Bk is the square rooted values of the diagonal of this matrix corre-
sponding to f;.. This is what is reported in the summary output.

mod.randomslope <- lmer(distance-~age + (agelid), data = dental)
lme4: :fixef (mod.randomslope)

(Intercept) age
16.7611 0.6602

vcov (mod.randomslope)

2 x 2 Matrix of class "dpoMatrix"

(Intercept) age
(Intercept) 0.60105 -0.046855
age -0.04685 0.005077

summary (mod . randomslope)

Linear mixed model fit by REML ['lmerMod']
Formula: distance ~ age + (age | id)

Data: dental
REML criterion at convergence: 442.6
Scaled residuals:

Min 1Q Median 3Q Max
-3.223 -0.494 0.007 0.472 3.916

Random effects:

191

Groups Name Variance Std.Dev. Corr

id (Intercept) 5.4166 2.327
age 0.0513 0.226 -0.61
Residual 1.7162 1.310

Number of obs: 108, groups: id, 27

Fixed effects:

Estimate Std. Error t value
(Intercept) 16.7611 0.7753 21.62
age 0.6602 0.0713 9.27

Correlation of Fixed Effects:
(Intr)
age -0.848

To test the hypothesis H, : 5, =0 vs. Hy : 8, # 0, we can calculate a z-statistic,

z = 4—§£rf
SE(B)
There is debate about the appropriate distribution of this statistic, which is why p-values are

not reported in the output. However, if you have an estimate that is large relative to the
standard error, that indicates that it is significantly different from zero.

To test a more involved hypothesis H, : LG = 0 (for multiple rows), we can calculate a Wald
statistic,

W2 = (L) (LCou(B)LT) 1 (LB)

Then we assume the sampling distribution is approximately x? with df = # of rows of L to
calculate p-values (as long as n is large). Below is some example R code.

b = fixef(modl)

W = vcov(modl)

L = matrix(c(0,0,0,1),nrow=1)
L%*%b

(se = sqrt(diag(Lyx%W/x%t(L)))) ##Robust SE's for Lb

##957, Confidence Interval (using Asymptotic Normality)
L%*%b - 1.96%*se

192

L%*%b + 1.96%*se

##Hypothesis Testing
w2 <- as.numeric(t(L%*%b) %x% solve(L %x% W %% t(L))%x% (L%*%b)) ## should be approzimatel
1 - pchisq(w2, df = nrow(L)) #p-value

Let’s consider the data on the guinea pigs. In particular, we fit a model with a random
intercept and dose, time, and the interaction between dose and time. If we want to know if the
interaction term is necessary, we need to test whether both of their slopes for the interaction
term are equal to 0.

pigs <- read.table("./data/diet.dat", col.names=c("id", paste("bw.",c(1,3,4,5,6,7),sep=""),
pigs <- pigs %>%

gather (Tmp,bw, bw.1l:bw.7) %>%

separate(Tmp,into=c('Var', 'time'), remove=TRUE)

pigs$time <- as.numeric(pigs$time)
pigs$dose <- factor(pigs$dose)
levels(pigs$dose) <- c("Zero dose",' Low dose', 'High dose')

mod.pigs <- lmer(bw ~ dose*time + (1]|id), data = pigs)
summary (mod.pigs)

Linear mixed model fit by REML ['lmerMod']
Formula: bw ~ dose * time + (1 | id)
Data: pigs

REML criterion at convergence: 843.8
Scaled residuals:

Min 1Q Median 3Q Max
-2.5621 -0.4107 0.0169 0.6843 2.1099

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 1347 36.7
Residual 703 26.5

Number of obs: 90, groups: id, 15

Fixed effects:
Estimate Std. Error t wvalue

193

(Intercept) 469.69 20.15 23.31

dose Low dose 4.84 28.50 0.17
doseHigh dose 11.15 28.50 0.39
time 16.03 2.45 6.53
dose Low dose:time 6.53 3.47 1.88
doseHigh dose:time 3.60 3.47 1.04

Correlation of Fixed Effects:

(Intr) dsLwds dsHghd time dsLds:
doseLowdose -0.707
doseHighdos -0.707 0.500
time -0.528 0.373 0.373
dosLowds:tm 0.373 -0.528 -0.264 -0.707
dosHghds:tm 0.373 -0.264 -0.528 -0.707 0.500

b = 1lme4d::fixef (mod.pigs)
W = vcov(mod.pigs)
(L <- matrix(c(rep(0,4),1,0,rep(0,5),1) ,nrow=2,byrow=TRUE))

(.11 [,21 [,3] [,4] [,8] [,6]
[1,] 0 0 0 0 1 0
[2,] 0 0 0 0 0 1

w2 <-as.numeric(t(L%*%b) %x% solve(L %x% W %% t(L))%x*x% (L%*%b))
1- pchisq(w2, df = nrow(L)) #We don't have enough evidence to reject null (thus, don't need

[1] 0.1695

Lastly, another option is a likelihood ratio test. Suppose we have two models with the same
random effects and covariance models.

o Full model: M} has p columns in X; and thus p fixed effects 3, ..., 8, .
e Nested model: M, has k columns such that k£ < p and p — k fixed effects 3, = 0.

If we use maximum likelihood estimation, it makes sense to compare the likelihood of two
models.

H,, : nested model is true, H, : full model is true

If we take the ratio of the likelihoods from the nested model and full model and plug in the
maximum likelihood estimators, then we have another statistic.

194

L,(B,V) o o P
D= —2log | =222 | = —2log(L,, (8, V)) + 2log(L (3, V))
°g<Lf<ﬁ,V>> * e

The sampling distribution of this statistic is approximately chi-squared with degrees of free-
dom equal to the difference in the number of parameters between the two models.

mod.pigsML <- lmer(bw ~ dosextime + (1]id), data = pigs, REML=FALSE)
mod.pigsML2 <- Imer(bw ~ doset+time + (1|id), data = pigs, REML=FALSE)

anova(mod.pigsML,mod.pigsML2)

Data: pigs
Models:
mod.pigsML2: bw ~ dose + time + (1 | id)
mod.pigsML: bw ~ dose * time + (1 | id)
npar AIC BIC logLik -2xlog(L) Chisq Df Pr(>Chisq)
mod.pigsML2 6 892 907 -440 880
mod.pigsML 8 893 913 -438 877 3.61 2 0.16

(Dstat <- -2xlogLik(mod.pigsML2)+2*logLik(mod.pigsML))

'log Lik.' 3.609 (df=6)

1-pchisq(Dstat,df = 2) #df = difference in number of parameters

'log Lik.' 0.1645 (df=6)

6.8.8.2 Information Criteria for Choosing Fixed Effects

To use BIC to choose models, you must use maximum likelihood estimation instead of
REML.

mod.pigsML <- lmer(bw ~ dosextime + (1]id), data = pigs, REML=FALSE)
summary (mod . pigsML)

195

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: bw ~ dose * time + (1 | id)

Data: pigs
AIC BIC logLik -2*log(L) df.resid
892.9 912.9 -438.4 876.9 82

Scaled residuals:
Min 1Q Median 3Q Max
-2.656 -0.405 0.034 0.684 2.167

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 1059 32.5
Residual 675 26.0

Number of obs: 90, groups: id, 15

Fixed effects:
Estimate Std. Error t wvalue

(Intercept) 469.69 18.52 25.36
dose Low dose 4.84 26.19 0.18
doseHigh dose 11.15 26.19 0.43
time 16.03 2.40 6.66
dose Low dose:time 6.53 3.40 1.92
doseHigh dose:time 3.60 3.40 1.06

Correlation of Fixed Effects:

(Intr) dsLwds dsHghd time dsLds:
doseLowdose -0.707
doseHighdos -0.707 0.500
time -0.563 0.398 0.398
dosLowds:tm 0.398 -0.563 -0.281 -0.707
dosHghds:tm 0.398 -0.281 -0.563 -0.707 0.500

BIC(mod.pigsML)

[1] 912.9

mod.pigsML2 <- lmer(bw ~ dose+time + (1[id), data = pigs, REML=FALSE)
summary (mod . pigsML2)

Linear mixed model fit by maximum likelihood ['lmerMod']

196

Formula: bw ~ dose + time + (1 | id)
Data: pigs

AIC BIC logLik -2*log(L)
892.5 907.5 -440.2 880.5

Scaled residuals:
Min 1Q Median 3Q Max
-2.8167 -0.4878 -0.0196 0.6569 2.1617

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 1053 32.5
Residual 708 26.6

Number of obs: 90, groups: id, 15

Fixed effects:

Estimate Std. Error t value

(Intercept) 455.05 16.50 27.58
dose Low dose 33.13 21.65 1.53
doseHigh dose 26.77 21.65 1.24
time 19.40 1.42 13.64

Correlation of Fixed Effects:
(Intr) dsLwds dsHghd

doselLowdose -0.656

doseHighdos -0.656 0.500

time -0.374 0.000 0.000

BIC(mod.pigsML2) #This model has a lower

[1] 907.5

6.8.8.3 Hypothesis Testing for Random Effects

The main way to compare models with different random effects is to compare two models with
the same fixed effects. Then use a likelihood ratio test with ML to compare the two models’ fit.
Again, the null hypothesis is that the smaller model (less complex model — fewer parameters)
is the true model. If we see a higher log-likelihood with the more complex model, we may
get a small p-value suggesting that we reject the null hypothesis in favor of the more complex

model.

197

df .resid
84

BIC

Below, I compare two models fit to the guinea pig data. They have the same fixed effects, but
I allowed one to have a random slope and intercept while the other only has a random slope.
By comparing these two models, we find that the one with a random slope and intercept better
fits the data. Thus we reject the null hypothesis that the model with the random intercept is
true in favor of the model with the random slope and intercept.

mod.pigsML2 <- lmer(bw ~ dose+time + (1[id), data = pigs, REML=FALSE)
mod.pigsML3 <- Imer(bw ~ dose+time + (time|id), data = pigs, REML=FALSE)

anova(mod.pigsML2, mod.pigsML3)

Data: pigs
Models:
mod.pigsML2: bw ~ dose + time + (1 | id)
mod.pigsML3: bw ~ dose + time + (time | id)
npar AIC BIC logLik -2#%log(L) Chisq Df Pr(>Chisq)

mod.pigsML2 6 892 907 -440 880
mod.pigsML3 8 879 899 -432 863 17.3 2 0.00017 =*x*
Signif. codes: O 'x*x' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

6.8.9 Predicting Random Effects

The best predictor of the random effects is

E(b;|Y;) = GZ]V; ' (Y; — X,$)
This is the best linear unbiased predictor (BLUP).
Therefore,
A -~ ~ -1 -
b; = GZzTVi (Y; = X;5)
which is called the empirical BLUP. We can get this with R’s ranef () function.

lme4: :ranef (mod.randomslope) $id

198

(Intercept) age

1 -0.4859 -0.178215
2 -1.0120 0.009873
3 -0.7730 0.050657
4 1.0694 -0.029879
5 0.5170 -0.167976
6 -0.6205 -0.186561
7 -0.1877 -0.068856
8 1.2507 -0.174430
9 -0.2908 -0.218052
10 -2.2816 -0.250575
11 1.2178 0.083180
12 1.0516 0.215684
13 -0.7276 0.014519
14 -0.1740 0.035857
15 3.0010 -0.065931
16 -1.1769 0.025619
17 1.2178 0.083180
18 -0.6081 0.034911
19 0.8605 -0.094755
20 -0.4446 0.135924
21 2.6535 0.211123
22 0.8907 -0.118846
23 -0.9982 0.114586
24 -4.1305 0.413754
25 0.9045 -0.014133
26 -0.5352 0.208199
27 -0.1877 -0.068856

hist(lme4: :ranef (mod.randomslope)id " (Intercept) *)

199

Histogram of Ime4::ranef(mod.randomslope)id‘(Intercept)’

12

Frequency

0 2 4 6 8
I

Ime4::ranef(mod.randomslope)id‘(Intercept)*

hist(lme4: :ranef (mod.randomslope)idage)

Histogram of Ime4::ranef(mod.randomslope)idage

Frequency
4
|

[]

I I I I
-0.2 0.0 0.2 0.4

Ime4::ranef(mod.randomslope)Sidage

We can see here that the predicted random effects are not necessarily Normally distributed
(which was an assumption we made in fitting the model).

6.8.10 Predicting Outcomes

Thus our best prediction of Y, is

200

?z’ = XzB + ZiBi

which can be rewritten as the weighted average of the population marginal mean, XZB and
the individual response Y,

predict (mod.randomslope)

1 2 3 4 5 6 7 8 9 10 11 12 13
20.13 21.09 22.06 23.02 21.11 22.45 23.79 25.13 21.67 23.10 24.52 25.94 22.87
14 15 16 17 18 19 20 21 22 23 24 25 26
24.13 25.39 26.65 21.22 22.20 23.18 24.17 19.93 20.88 21.82 22.77 21.30 22.49
27 28 29 30 31 32 33 34 35 36 37 38 39
23.67 24.85 21.90 22.87 23.84 24.81 20.01 20.89 21.78 22.66 17.76 18.58 19.39
40 41 42 43 44 45 46 47 48 49 50 51 52
20.21 23.93 25.41 26.90 28.39 24.82 26.57 28.32 30.07 21.43 22.78 24.13 25.48
53 54 55 56 57 58 59 60 61 62 63 64 65
22.16 23.55 24.94 26.33 24.52 25.70 26.89 28.08 21.07 22.44 23.81 25.19 23.93
66 67 68 69 70 71 72 73 74 75 76 7 78
25.41 26.90 28.39 21.71 23.10 24.49 25.88 22.15 23.28 24.41 25.54 22.69 24.28
79 80 81 82 83 84 85 86 87 88 89 90 91
25.87 27.46 26.39 28.13 29.87 31.61 21.98 23.07 24.15 25.23 21.96 23.51 25.06
92 93 94 95 96 97 98 99 100 101 102 103 104
26.61 21.22 23.37 25.52 27.67 22.83 24.13 25.42 26.71 23.17 24.91 26.65 28.38
105 106 107 108
21.30 22.49 23.67 24.85

6.8.11 Generalized Linear Mixed Effects Models

We can generalize the linear mixed effects model by using a link function, g(), to connect the
linear model (with random effects)

g(E(Y;)) = X8+ Z;b;

where

b, ~ N(0,G)

Similar to GLM’s, we assume an outcome distribution from the exponential family that de-
termined the relationship between the mean and the variance,

201

Var(Y;;lb;) = ¢v(E(Y|b;))

summary (glmer (resp ~ age + smoke + (1|id), data = ohio, family = binomial))

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial (logit)
Formula: resp ~ age + smoke + (1 | id)
Data: ohio

AIC BIC logLik -2*log(L) df.resid
1597.9 1620.6 -794.9 1589.9 2144

Scaled residuals:
Min 1Q Median 3Q Max
-1.403 -0.180 -0.158 -0.132 2.518

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 5.49 2.34
Number of obs: 2148, groups: id, 537

Fixed effects:
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -3.374 0.275 -12.27 <2e-16 **x

age -0.177 0.068 -2.60 0.0093 *x*

smoke 0.415 0.287 1.45 0.1484

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) age

age 0.227

smoke -0.419 -0.010

202

7 Spatial Data

Compared to time series and longitudinal data, spatial data is indexed by space (in 2 or 3
dimensions).

Typically, we have point-referenced or geostatistical data where our outcome is Y(s)
where s € R? and s varies continuously. s may be a point on the globe referenced by its
longitude and latitude or a point in another coordinate system. We are typically interested in
the relationships between the outcome and explanatory variables and making predictions at
locations where we do not have data. We will use that points closer to each other in space are
more likely to be similar in value in our endeavors.

Below, we have mapped the value of zinc concentration (coded by color) at 155 spatial locations
in a flood plain of the Meuse River in the Netherlands. We might be interested in explaining
the variation in zinc concentrations in terms of the distance to the river, flooding frequency,
soil type, land use, etc. After building a model to predict the mean zinc concentration, we
could use that model to help us understand the current landscape and to make predictions.
Remember that to make predictions, we have to observe these characteristics at other spatial
locations.

require(sp)

Loading required package: sp

require (ggmap)
data(meuse)

ggplot (meuse, aes(x = x, y = y, color = zinc)) +
geom_point() +
scale color_viridis c() +
coord_equal() +
theme minimal ()

203

https://en.wikipedia.org/wiki/Meuse

[]
000,
(]
J%’Fb
333000) L
@t
ceg .
® ° zinc
o @
e o $
0% o 0°°
332000 oS ::0. 1500
> ;0 O'oo:
RYT R 1000
Y @
< Sadil)
L J ° o0
331000 oo © 500
o ~.. (Y]
LY [] °)
[) o)
..... []
330000 . o900
® o0

178500790007950080000805008100081500
X

We may not be able to collect data at that fine granularity of spatial location due to a lack of
data or to protect the confidentiality of individuals. Instead, we may have areal or lattice or
discrete data such that we have aggregate data that summarizes observations within a spatial
boundary such as a county or state (or country or within a square grid). In this circumstance,
we think that spatial areas are similar if they are close (share a boundary, centers are close
to each other, etc.) We must consider correlation based on factors other than longitude and
latitude.

Below, we have mapped the rate of sudden infant death syndrome (SIDS) for countries in
North Carolina in 1974. We might be interested in explaining the variation in country SIDS
rates in terms of population size, birth rate, and other factors that might explain county-level
differences. After building a model to predict the mean SIDS rate, we could use that model to
help us understand the current public health landscape, and we can use it to make predictions
in the future.

library(sf)
nc <- st_read(system.file("shape/nc.shp", package="sf"))

Reading layer "nc' from data source
*/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/sf/shape/nc.shp’
using driver "ESRI Shapefile'

Simple feature collection with 100 features and 14 fields

Geometry type: MULTIPOLYGON

Dimension: XY

204

Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
Geodetic CRS: NAD27

st_crs(nc) <- "+proj=longlat +datum=NAD27"
row.names(nc) <- as.character (nc$FIPSNO)

ggplot(nc, aes(fill = SID74)) +

geom_sf() +
scale_fill gradient(low='white',high='red') +
labs(title = "SIDS (sudden infant death syndrome) in North Carolina") +

theme classic()

SIDS (sudden infant death syndrome) in North Carolina

36.5°N A .W-.-.. ' R sSID74
&6\“%9'5'-“5"'%3“ w0
35.5°N - ““e‘.‘.’"‘“ LA I
”'ﬂ“' 5‘.‘_“:‘ /j 30
35.0°N - iy 20

84°W 82°W 80°W 78°W 76°W

In some disciplines, we may be most interested in the locations themselves and study the point
patterns or point processes to try and determine any structure in the locations.

The data below record the locations of 126 pine saplings in a Finnish forest, including their
heights and diameters. We might be interested if there are any patterns in the location of the
pines. Is it uniform? Is there clustering? Are there optimal distances between pines such that
they’ll only grow if they are far enough away from each other (repelling each other)?

require(spatstat)

data(finpines)
plot (unmark(finpines), main="Finnish pines: locations")

205

Finnish pines: locations

Oap © B® g
o
o o}
CQC% % (e]0] o
D O o}
Soo B o

7.1 Coordinate Reference Systems (CRS)

At the heart of every spatial visualization is a set of locations. One way to describe a location
is in terms of coordinates and a coordinate reference system (known as CRS).

There are three main components to a CRS: ellipsoid, datum, and a projection.

7.1.1 Ellipsoid

While you might have learned that the Earth is a sphere, it is actually closer to an ellipsoid
with a bulge at the equator. Additionally, the surface is irregular and not smooth. To define
a CRS, we first need to choose a mathematical model represent a smooth approximation to
the shape of the Earth. The common ellipsoid models are known as WGS84 and GRS80. See
the illustration below of one ellipsoid model (shown in black) as compared to Earth’s true
irregular surface (shown in red).

206

North

Geoid
(Approx. Mean

Sea Level) \

Centre of the
Earth's Mass
coincides with

Equator °
Y Centre of
Elipsoid/ Elipsoid/Spheroid
Spheroid /

Elipsoid/Spheroid
is a best fit to the
Earth as a whole

South

Figure 7.1: Illustration of ellipsoid model and Earth’s irregular surface, centered to have an
overall best fit. Source: www.icsm.gov.au

7.1.2 Datum

Each ellipsoid model has different ways to position it self relative to Earth depending on the
center or origin. Each potential position and reference frame for representing the position of
locations on Earth is called a datum.

For example, two different datum for the same ellipsoid model can provide a more accurate fit
or approximation of the Earth’s surface depending on the region of interest (South America
v. North America). For example, the NAD83 datum is a good fit for the GRS80 ellipsoid in
North America, but STRGAS2000 is a better fit for the GRS80 ellipsoid in South America.
The illustration below shows one datum in which the center of the ellipsoid does not coincide
with the center of Earth’s mass. With this position of the ellipsoid, we gain a better fit for
the southern half of the Earth.

207

North

Fits this part of

the Earth Geoid
poorly \ <«— (Approx. Mean
Sea Level)

Centre of the
Earth’s Mass

N

Equator
\ Centre of
Elipsoid/ Elipsoid/Spheroid
Spheroid

Fits this part of
the Earth well

South

Figure 7.2: Illustration of ellipsoid model and Earth’s irregular surface for a datum that better
fits southern part (bottom right) of the Earth. Source: www.icsm.gov.au

It is useful to know that the Global Positioning System (GPS) uses the WGS84 ellipsoid model
and a datum by the same name, which provides an overall best fit of the Earth.

If you have longitude and latitude coordinates for a location, it is important to know what
datum and ellipsoid were used to define those positions.

Note: In practice, the horizontal distance between WGS8 and NADS8S coordinates is about
3-4 feet in the US, which may not be significant for most applications.

The 3 most common datum/ellipsoids used in the U.S.:

WGS84 (EPSG: 4326)

+init=epsg:4326 +proj=longlat +ellps=WGS84
+datum=WGS84 +no_defs +towgs84=0,0,0

208

CRS used by Google Earth and the U.S. Department of Defense for all their mapping.
Tends to be used for global reference systems.
GPS satellites broadcast the predicted WGS84 orbits.

NADS83 (EPSG: 4269)

+init=epsg:4269 +proj=longlat +ellps=GRS80 +datum=NAD83

+no_defs +towgs84=0,0,0

##Most commonly used by U.S. federal agencies.

Aligned with WGS84 at creation, but has since drifted.

Although WGS84 and NAD83 are not equivalent, for most applications they are very similar.

NAD27 (EPSG: 4267)

+init=epsg:4267 +proj=longlat +ellps=clrk66 +datum=NAD27
+no_defs
+nadgrids=0@conus,@alaska,@ntv2_0.gsb,0@ntvl_can.dat

Has been replaced by NAD83, but is still encountered!

For more resources related to EPSG, go to https://epsg.io/ and https://spatialreference.
org/.

7.1.3 Projection

Lastly, we must project the 3D ellipse on a 2D surface to make a map with Easting and
Northing coordinates. Flattening a round object without distortion is impossible, resulting in
trade-offs between area, direction, shape, and distance. For example, distance and direction
are trade-offs because both features can not be simultaneously preserved. No “best” projection
exists, but some are better suited to different applications.

For a good overview of common projection methods, see https://pubs.usgs.gov/gip/70047422/
report.pdf.

One of the most commonly used projection is the Mercator projection which is a cylindrical
map projection from the 1500’s. It became popular for navigation because it represented north
as up and south as down everywhere and preserves local directions and shape. However, it
inflates the size of regions far from the equator. Thus, Greenland, Antarctica, Canada, and
Russia appear large relative to their actual land mass as compared to Central Africa. See the
illustration below to compare the area/shape of the countries with the Mercator projection of
the world (light blue) with the true areas/shapes (dark blue).

209

https://epsg.io/
https://spatialreference.org/
https://spatialreference.org/
https://pubs.usgs.gov/gip/70047422/report.pdf
https://pubs.usgs.gov/gip/70047422/report.pdf

World Mercator projection with true country size added

@neilrkaye

Figure 7.3: Source: (neilrkaye?)

Below you can see four different world projections. Take note of what is lost in terms of angle,
area, or distance in these projections.

library(rnaturalearth)
world <- ne_countries(scale = "medium", returnclass = "sf")

Basic Map w/ labels

ggplot(data = world) +
geom_sf (color = "black", fill = "#badab5") +
labs(x = "Longitude", y = "Latitude", title = "World Map - Mercator Projection", subtitle
theme_bw ()

210

World Map — Mercator Projection
(242 countries)

Latitude

Longitude

ggplot(data = world) +
geom_sf(color = "black", fill = "#badabb") +
coord_sf(crs = "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +u

labs(title = "Lambert Azimuthal Equal-Area Projection", subtitle = "Correctly represents a

theme bw()

Lambert Azimuthal Equal-Area Projection
Correctly represents area but not angles

211

ggplot(data = world) +
geom_sf(color = "black", fill = "#badabb") +

coord_sf(crs = "+proj=fouc") +
labs(title = "Foucaut Projection", subtitle = "Correctly represents area, lots of distorti
theme bw()

Foucaut Projection
Correctly represents area, lots of distortion in high latitudes

ggplot(data = world) +
geom_sf(color = "black", fill = "#badab5") +
coord_sf(crs = "+proj=natearth2") +
labs(title = "Natural Earth II Projection", subtitle = "Represents globe shape, distorte
theme bw()

212

Natural Earth 1l Projection
Represents globe shape, distorted at high latitudes

It is important to consider what ellipsoid, datum, and projection your locations have been
recorded and mapped using.

7.2 Data Models

7.2.1 Vector

Vector data represents the world as a set of spatial geometries that are defined in terms of
location coordinates (with a specified CRS) with non-spatial attributes or properties.

The three basic geometries are

o Points: Locations defined based on a (x, y) coordinates.

e Lines: A set of ordered points connected by straight lines.

e Polygons: A set of ordered points connected by straight lines, first and last point are the
same.

For example, city locations can be represented with points, roads and rivers can be represented
by lines, and geo-political boundaries and lakes can be represented by polygons.

Hundreds of file formats exist to store spatial vector data. A text file (such as .csv) can
store the coordinates in two columns (x,y) in addition to a group id (needed for lines and
polygons) plus attributes or properties in additional columns. Note that text files do not store
the CRS. However, shapefiles (.shp) developed by ESRI is one of the most widely supported

213

spatial vector file format (that includes the CRS). Additionally, GeoJSON (.geojson) and KML
(.kml) are additional popular formats.

7.2.2 Raster

Raster data represents the world using a continuous grid of cells where each cell has a single
value. These values could be continuous such as elevation or precipitation or categorical such
as land cover or soil type.

Typically regular cells are square in shape but they can be rotated and sheared. Rectilinear
and curvilinear shapes are also possible, depending on the spatial region of interest and CRS.

Be aware that high resolution raster data involves a large number of small cells. This can slow
down the computations and visualizations.

Many raster file formats exist. One of the most popular is GeoTIFF (.tif or .tiff). More
complex raster formats include NetCDF (.nc) and HDF (.hdf). To work with raster data in
R, you’ll use the raster, terra, and the stars packages. If you are interested in learning more,
check out https://r-spatial.github.io/stars/.

7.3 Working with Spatial Data in R

The technology available in R is rapidly evolving and improving. In this set of notes, I've
highlighted some basics for working with spatial data in R, but I list some good resources
below.

o https://cran.r-project.org/web/views/Spatial.html (last updated in 2023)
o https://r-spatial.org/book/ (last updated in 2023)

o https://r-spatial.github.io/sf/index.html (last updated in 2023)

o https://r.geocompx.org/ (last updated in 2023)

o http://www.nickeubank.com/gis-in-r/ (last updated in 2023)

o https://cengel.github.io/R-spatial/ (last updated in 2019)

7.3.1 R Packages

The following R packages support spatial data classes (data sets that are indexed with geome-
tries):

o sf: generic support for working with spatial data
o geojsonsf: read in geojson files

The following R packages contain cultural and physical boundaries, and raster maps:

214

e maps: polygon maps of the world

e USAboundaries: contemporary US state, county, and Congressional district boundaries,
as well as zip code tabulation area centroids

e rnaturalearth: hold and facilitate interaction with Natural Earth map data

The following R packages support geostatistical /point-referenced data analysis:

o gstat: classical geostatistics

e geoR: model-based geostatistics

e RandomFields: stochastic processes
e akima: interpolation

The following R packages support regional /areal data analysis:

e spdep: spatial dependence
o spgwr: geographically weighted regression

The following R packages support point patterns/processes data analysis:

e spatstat: parametric modeling, diagnostics
e splancs: non-parametric, space-time

7.3.2 Read in data to R

For each file format, we need use a different function to read in the data. See the examples
below for reading in GeoJSON, csv, and shapefiles.

Read in GeoJSON file
hex_spatial <- geojsonsf::geojson_sf("data/us_states_hexgrid.geojson")

Read in CSV File
pop_growth <- readr::read_csv('data/apportionment.csv') %>, janitor::clean_names()

Rows: 684 Columns: 10

-- Column specification -------———---------"""-—"————————
Delimiter: ","

chr (2): Name, Geography Type

dbl (5): Year, Percent Change in Resident Population, Resident Population De...
num (3): Resident Population, Resident Population Density, Average Apportion...

i Use “spec()” to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE™ to quiet this message.

215

https://www.naturalearthdata.com/

Read in Shapefiles
mn_cities <- sf::read_sf('data/shp_loc_pop_centers') #shp file/folder

Warning in CPL_read_ogr(dsn, layer, query, as.character(options), quiet,
automatically selected the first layer in a data source containing more than
one.

mn_water <- sf::read_sf('data/shp_water_lakes_rivers') #shp file/folder

7.3.3 Data classes in R
When data is read it, an R data object is created of a default class. Notice the classes of the

R objects we read in. Also, notice that an object may have multiple classes, which indicate
the type of structure it has and how functions may interact with the object.

class(hex_spatial)

[1] "sf" "data.frame"

class(pop_growth)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

class(mn_cities)

(1] "sf" "tbl_df" "tbl" "data.frame"

class(mn_water)

(1] "sf" "tbl_df" "tbl" "data.frame"

You also may encounter classes such as SpatialPoints, SpatialLines, and SpatialPolygons,
or Spatial*DataFrame from the sp package. The community is moving away from using
older sp classes to sf classes. It is useful for you to know that the older versions exist but
stick with the sf classes.

e sfc objects are modern, general versions of the spatial geometries from the sp package
with a bbox, CRS, and many geometries available.
o sf objects are data.frame-like objects with a geometry column of class sfc

216

7.3.4 Convert data class types

We can convert objects between these data classes with the following functions:

e fortify(x): sp object x to data.frame
e st_as_sf(x): sp object x to sf
o st_as_sf(x, coords = c("long", "lat")): data.frame x to sf as points

e To convert a data.frame with columns of long, lat, and group containing polygon
geometry information, you can use:

st_as_sf(x, coords = c("long", "lat")) %>%
group_by(group) %>%
summarise (geometry = st_combine(geometry)) %>%
st_cast ("POLYGON")

7.3.5 Static Visualizations

In general, if you have geometries (points, polygons, lines, etc.) that you want to plot, you
can use geom_sf () with ggplot(). See https://ggplot2.tidyverse.org/reference/ggsf.html for
more details.

7.3.5.1 Plotting points

If you have x and y coordinates (longitude and latitude over a small region), we can use our
typical plotting tools in ggplot2 package using the x and y coordinates as the x and y values in
geom_point (). Then you can color the points according to a covariate or outcome variable.

If you have longitude and latitude over the globe or a larger region, you must project those
coordinates onto a 2D surface. You can do this using the sf package and st_transform() after
specifying the CRS (documentation: https://www.rdocumentation.org/packages/sf/versions/
0.8-0/topics/st__transform). Then we can use geom_sf ().

We'll walk through create a map of MN with different layers of information (city point loca-
tions, county polygon boundaries, rivers as lines and polygons, and a raster elevation map).
To add all of this information on one map, we need to ensure that the CRS is the same for all
spatial datasets.

#check CRS
st_crs(mn_cities)

217

https://www.rdocumentation.org/packages/sf/versions/0.8-0/topics/st_transform
https://www.rdocumentation.org/packages/sf/versions/0.8-0/topics/st_transform

Coordinate Reference System:
User input: NAD83 / UTM zone 15N
wkt:
PROJCRS["NAD83 / UTM zone 15N",
BASEGEOGCRS["NAD83",

DATUM["North American Datum 1983",

ELLIPSOID["GRS 1980",6378137,298.257222101,
LENGTHUNIT ["metre",1]11],

PRIMEM["Greenwich",O,
ANGLEUNIT["degree",0.0174532925199433]],

ID["EPSG",4269]],

CONVERSION["UTM zone 15N",

METHOD ["Transverse Mercator",
ID["EPSG",9807]],

PARAMETER["Latitude of natural origin",O0,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]1],

PARAMETER["Longitude of natural origin",-93,
ANGLEUNIT ["Degree",0.0174532925199433],
ID["EPSG",8802]],

PARAMETER["Scale factor at natural origin",0.9996,
SCALEUNIT["unity",1],

ID["EPSG",8805]],

PARAMETER["False easting",500000,
LENGTHUNIT ["metre",1],
ID["EPSG",8806]],

PARAMETER["False northing",0,

LENGTHUNIT ["metre",1],
ID["EPSG",8807111],
CS[Cartesian,?2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT ["metre",1]1],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT ["metre",1]],
ID["EPSG",26915]]

#check CRS
st_crs(mn_water)

Coordinate Reference System:

218

User input: NAD83 / UTM zone 15N
wkt:
PROJCRS["NAD83 / UTM zone 15N",
BASEGEOGCRS ["NAD83",

DATUM["North American Datum 1983",

ELLIPSOID["GRS 1980",6378137,298.257222101,
LENGTHUNIT ["metre",1]1],

PRIMEM["Greenwich",O0,
ANGLEUNIT["degree",0.0174532925199433]],

ID["EPSG",4269]],

CONVERSION["UTM zone 15N",

METHOD ["Transverse Mercator",
ID["EPSG",9807]],

PARAMETER["Latitude of natural origin",O0,
ANGLEUNIT ["Degree",0.0174532925199433],
ID["EPSG",8801]],

PARAMETER["Longitude of natural origin",-93,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],

PARAMETER["Scale factor at natural origin",0.9996,
SCALEUNIT ["unity",1],

ID["EPSG",8805]],

PARAMETER["False easting",500000,
LENGTHUNIT["metre",1],

ID["EPSG",8806]],

PARAMETER["False northing",O0,

LENGTHUNIT ["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,?2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT ["metre",1]1],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT ["metre",1]],
ID["EPSG",26915]]

#transform CRS of water to the same of the cities
mn_water <- mn_water %>
st_transform(crs = st_crs(mn_cities))

219

install.packages("remotes")
remotes::install_github("ropensci/USAboundaries")
remotes::install_github("ropensci/USAboundariesData")

Load country boundaries data as sf object
mn_counties <- USAboundaries::us_counties(resolution = "high", states = "Minnesota")

Remove duplicate column names
names_counties <- names(mn_counties)
names (mn_counties) [names_counties == 'state_name'] <- c("state_namel", "state_name2")

Check CRS
st_crs(mn_counties)

Coordinate Reference System:
User input: EPSG:4326
wkt:
GEOGCRS["WGS 84",
DATUM["World Geodetic System 1984",

ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT ["metre",1]1]1],

PRIMEM["Greenwich",O,

ANGLEUNIT["degree",0.0174532925199433]],

CS[ellipsoidal,?2],

AXIS["geodetic latitude (Lat)",north,
ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],

AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]1],

USAGE[

SCOPE["Horizontal component of 3D system."],

AREA["World."],

BBOX[-90,-180,90,18011,

ID["EPSG",4326]]

Transform the CRS of county data to the more local CRS of the cities
mn_counties <- mn_counties %>%

st_transform(crs = st_crs(mn_cities))

st_crs(mn_counties)

220

Coordinate Reference System:
User input: NAD83 / UTM zone 15N
wkt:
PROJCRS["NAD83 / UTM zone 15N",
BASEGEOGCRS["NAD83",

DATUM["North American Datum 1983",

ELLIPSOID["GRS 1980",6378137,298.257222101,
LENGTHUNIT ["metre",1]11],

PRIMEM["Greenwich",O,
ANGLEUNIT["degree",0.0174532925199433]],

ID["EPSG",4269]],

CONVERSION["UTM zone 15N",

METHOD ["Transverse Mercator",
ID["EPSG",9807]],

PARAMETER["Latitude of natural origin",O0,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]1],

PARAMETER["Longitude of natural origin",-93,
ANGLEUNIT ["Degree",0.0174532925199433],
ID["EPSG",8802]],

PARAMETER["Scale factor at natural origin",0.9996,
SCALEUNIT["unity",1],

ID["EPSG",8805]],

PARAMETER["False easting",500000,
LENGTHUNIT ["metre",1],
ID["EPSG",8806]],

PARAMETER["False northing",0,

LENGTHUNIT ["metre",1],
ID["EPSG",8807111],
CS[Cartesian,?2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT ["metre",1]1],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT ["metre",1]],
ID["EPSG",26915]]

ggplot() + # plot frame
geom_sf(data = mn_cities, size = 0.5) + # city point layer
ggthemes: :theme_map ()

221

ggplot() + # plot frame
geom_sf(data = mn_counties, fill = NA) + # county boundary layer
geom_sf(data = mn_cities, size = 0.5) + # city point layer
ggthemes: : theme_map ()

5 '!:..::. Saaese
o8 % %) o

\ao'.‘
*
o
.
.
L]
oQee ©
o,

23

I.o.:q .
SRt

° .. o o0 "..!.' 08 % .'o.

ggplot () +
geom_sf(data = mn_counties, fill = 'wheat', color = "tan") +

222

geom_sf(data = mn_cities %>/, filter(Population >= 10000), mapping = aes(color = Population
scale_color_viridis_c() + #continuous (gradient) color scale

labs(title = "Minnesota Cities with Population >= 10,000") +

ggthemes: :theme_map() + theme(legend.position = "bottom") #move legend

Minnesota Cities with Population >= 10,000

Population @ 1e+05 @ 2e+05 @) 3e05 Population -

le+0

7.3.5.2 Plotting polygons

If you have areal data, you’ll need shapefiles with boundaries for those polygons. City, state,
or federal governments often provide these. We can read them into R with st_read() in
the sf package. Once we have that stored object, we can view shapefile metadata using the
st_geometry_type(), st_crs(), and st_bbox (). These tell you about the type of geometry
stored about the shapes, the CRS, and the bounding box that determines the study area of
interest.

#read in shapefile information
shapefile <- st_read(shapefile)

If we have data that are points that we will aggregate to a polygon level, then we could
use code such as the one below to join together the summaries at an average longitude and
latitude coordinate with the shapefiles by whether the longitude and latitude intersect with
the polygon.

223

#join the shapefile and our data summaries with a common polygon I.D. variable
fulldat <- left_join(shapefile, dat)

hex_growth <- hex_spatial %>%
mutate(name = str_replace(google_name,' \\(United States\\)',''),
abbr = is03166_2) %>%
left_join(pop_growth, by = 'name')

If we have data that are points that we will aggregate to a polygon level, then we could
use code such as the one below to join together the summaries at an average longitude and
latitude coordinate with the shapefiles by whether the longitude and latitude intersect with
the polygon.

make our data frame a spatial data frame

dat <- st_as_sf(originaldatsum, coords = c('Longitude', 'Latitude'))

#copy the coordinate reference info from the shapefile onto our new data frame
st_crs(dat) <- st_crs(shapefile)

#join the shapefile and our data summaries
fulldat <- st_join(shapefile, dat, join = st_intersects)

If you are working with U.S. counties, states, or global countries, the shapefiles are already
available in the map package. You’ll need to use the 1.D. variable to join this data with your
polygon-level data.

Once we have an sf object with attributes (variables) and geometry (polygons), we can use
geom_sf (aes(fill = attribute)) to plot and color the polygons in the ggplot2 context with
respect to an outcome variable.

hex_growth’,>), # start with sf object
filter(year == 2020) %>, #filter to focus on data from 2020
ggplot() +

geom_sf (aes(fill = percent_change_in_resident_population)) + # plot the sf geometry (polyg
geom_sf_text(aes(label = abbr), color = 'white') + # add text labels to the sf geometry r

labs(fill = 'Population Change (%)') + # Change legend label

ggthemes: :theme_map() + theme(legend.position = 'bottom', legend.justification

Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
give correct results for longitude/latitude data

224

'right') ;

WA MT ND MN Wi NY MA RI
IDNWY SD IA IL IN OH PA NJ CT

OR NV CO NE MO KY WV VA MD DE
CA JUT NM KS AR TN NC SC DC

AZ OK LA MS AL GA

Population Change (%) "

0 5 10 15

install.packages('devtools')
devtools::install_github("UrbanInstitute/urbnmapr")
library(urbnmapr) # projection with Alaska and Hawaii close to lower 48 states
get_urbn_map(map = "counties", sf = TRUE) %>%
left_join(countydata) %>%
ggplot() + geom_sf(aes(fill = horate), color = 'white',linewidth = 0.01) +
labs(fill = 'Homeownership Rate') +
scale_fill_gradient(high='white',low = 'darkblue',limits=c(0.25,0.85)) +
theme void()

Joining with by = join_by(county_fips)"
old-style crs object detected; please recreate object with a recent
sf::st_crs()

Warning in CPL_crs_from_input(x): GDAL Message 1: CRS EPSG:2163 is deprecated.
Its non-deprecated replacement EPSG:9311 will be used instead. To use the
original CRS, set the OSR_USE_NON_DEPRECATED configuration option to NO.

225

‘\‘\‘.l. -\.‘., raee T &
o e

Ty e rEESEe
I Pawe | AR
AV 1L B

|] -l’iﬁ‘&x A
e N 1 ;

Homeownership Rate
S ; 0.8
ey R ; ’

0.6

0.4

Subset to M.N.

get_urbn_map(map = "counties", sf = TRUE) %>%
left_join(countydata) %>%

filter(stringr: :str_detect(state_abbv, 'MN')) %>%
ggplot() + geom_sf(aes(fill = horate), color =

labs(fill = 'Homeownership Rate') +

'white',linewidth = 0.05) +
coord_sf(crs=26915) +

scale_fill_gradient(high='white',low = 'darkblue',limits=c(0.25,0.85)) +
theme _void()

Joining with “by = join_by(county_fips)"

old-style crs object detected; please recreate object with a recent
sf::st_crs()

226

Homeownership Rate
0.8

0.6

0.4

7.3.5.3 Plotting Raster

To include raster images in the visualization, we need to obtain/load raster data. Below shows
code to get the elevation raster image for MN.

Then we need to convert the raster to a data.frame to plot using geom_raster as an additional
layer to ggplot ().

elevation <- elevatr::get_elev_raster(mn_counties, z = 5, clip = 'bbox')

Mosaicing & Projecting

Clipping DEM to bbox

Note: Elevation units are in meters.

raster::crs(elevation) <- sf::st_crs(mn_counties)
Convert to Data Frame for plotting

elev_df <- elevation 7>J terra::as.data.frame(xy = TRUE)
names (elev_df) <-c('x','y','value')

227

ggplot () +
geom_raster(data = elev_df, aes(x = x,y = y,fill = value)) + # adding the elevation as fir
geom_sf(data = mn_counties, fill = NA, color = "black") +
geom_sf(data = mn_cities %>J, filter(Population >= 10000), mapping = aes(color = Population
scale_color_viridis_c() + #continuous (gradient) color scale
scale_fill_gradient(low = 'darkgreen',high = 'white', guide = FALSE) +
labs(title = "Minnesota Cities with Population >= 10,000") +
ggthemes: :theme_map() + theme(legend.position = "bottom") #move legend

Warning: The “guide” argument in “scale_x*()~ cannot be “FALSE™. This was deprecated in
ggplot2 3.3.4.

i Please use "none" instead.

Minnesota Cities with Population >= 10,000

1le+05 2

To demonstrate multiple layers on one visualization, let’s zoom into the Twin Cities and add
waterways and rivers.

Seven_countyarea <- st_bbox(mn_counties %>J, filter(name %in) c("Anoka", "Hennepin", "Ramsey"

elevation <- elevatr::get_elev_raster(mn_counties %>, st_crop(Seven_countyarea), z = 9, clip

Warning: attribute variables are assumed to be spatially constant throughout
all geometries

228

Mosaicing & Projecting
Clipping DEM to bbox

Note: Elevation units are in meters.

raster::crs(elevation) <- sf::st_crs(mn_counties)

#Convert to Data Frame for plotting
elev_df <- elevation %>), terra::as.data.frame(xy = TRUE)
names (elev_df) <-c('x','y','value')

ggplot) +
geom_raster (data = elev_df, aes(x = x,y = y,fill = value)) +
geom_sf(data = mn_counties, fill = NA, color = "black") + # county boundary layer

geom_sf (data mn_water, fill = 'lightsteelbluel',color = 'lightsteelbluel') + # added a r
geom_sf(data = mn_cities >, filter (Population >= 10000), mapping = aes(color = Population
coord_sf(xlim = Seven_countyareal[c(1,3)],ylim = Seven_countyareal[c(2,4)]) + # crop map to
scale_color_viridis_c(option = 'magma') + #continuous (gradient) color scale

scale_fill gradient(low = 'darkgreen',high = 'white') + #continuous (gradient) fill scale
labs(title = "Twin Cities with Population >= 10,000") +

ggthemes: :theme_map() + theme(legend.position = "none") #remove legend

Twin Cities with Population >= 10,000

229

7.3.6 More R Resources

o sf package: https://r-spatial.github.io/sf/
o sf Cheat sheet: https://github.com/rstudio/cheatsheets/blob/main/sf.pdf

7.4 Point Processes (optional)

A point pattern/process data set gives the locations of objects/events occurring in a study
region. These points could represent trees, animal nests, earthquake epicenters, crimes, cases
of influenza, galaxies, etc. We assume that a point’s occurrence or non-occurrence at a location
is random.

The observed points may have extra information called marks attached to them. These
marks represent an attribute or characteristic of the point. These could be categorical or
continuous.

7.4.1 Poisson Point Processes

The underlying probability model we assume determines the number of events in a small area
will be a Poisson model with parameter A(s), the intensity in a fixed area. This intensity may
be constant (uniform) across locations or vary from location to location (inhomogeneous).

For a homogeneous Poisson process, we model the number of points in any region A, N(A),
to be Poisson with

E(N(A)) = X - Area(A)

such that A is constant across space. Given N(A) = n, the N events form an iid sample from
the uniform distribution on A. Under this model, for any two disjoint regions A and B, the
random variables N(A) and N(B) are independent.

If we observe n events in a region A, the estimator A = n /Area(A) is unbiased if the model is
correct.

This homogeneous Poisson model is known as complete spatial randomness (CSR). If
points deviate from it, we might be able to detect this with a hypothesis test. We’ll return to
this when we discuss distances to neighbors.

To simulate data from a CSR process in a square [0,1]x[0,1], we could

e Generate the number of events from a Poisson distribution with A

230

n <- rpois(1, lambda = 50)
¢ Fix n and generate locations from the uniform

x <- runif(n,0,1)
y <= runif(n,0,1)

plot(x,y)
N o o o)
o 0 o S ©
4 © © o)
> o e} &
4 ° o °
8 o) (@)
4 o o) o) o}
o o
o o} e} % °
— 0 o)
© | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
X

o Alternatively, generate the data with rpoispp.

siml <- rpoispp(lambda = 50)

plot(simi)
siml
& o o
@] é)%oo
OO
o)
O O(C)S)OOO
0009 o°
o & 0o
o) ° 5 a
o) O O g0

If the intensity is not constant across space (inhomogeneous Poisson process), then we define
intensity as

231

_ .o E(N(ds))
Als) = D —s]

where ds is a small area element and N(A) has a Poisson distribution with mean

When working with point process data, we generally want to estimate and/or model A(s) in a
region A and determine if A\(s) = X for s € A.

7.4.2 Non-Parametric Intensity Estimation
7.4.2.1 Quadrat Estimation

One way to estimate the intensity A\(s) requires dividing the study area into sub-regions (also
known as quadrats). Then, the estimated density is computed for each quadrat by dividing the
number of points in each quadrat by the quadrat’s area. Quadrats can take on many shapes,
such as hexagons and triangles or the typically square quadrats.

If the points have uniform/constant intensity (CSR), the quadrat counts should be Poisson
random numbers with constant mean. Using a x? goodness-of-fit test statistic, we can test
H, : CSR,

plot(quadratcount(bei, nx=4, ny=4))

quadratcount(bei, nx = 4, ny = 4)

368 506 64 287
298 171 66 194
324 27 54 178
220 138 589 120

(T <- quadrat.test(bei, nx=4, ny=4))

232

Chi-squared test of CSR using quadrat counts
data: Dbei
X2 = 1754.6, df = 15, p-value < 2.2e-16

alternative hypothesis: two.sided

Quadrats: 4 by 4 grid of tiles

plot(bei)
plot (T, add=TRUE)

bei

236

55D 27 225.

The choice of quadrat numbers and shape can influence the estimated density and must be
chosen carefully. If the quadrats are too small, you risk having many quadrats with no points,
which may prove uninformative (and can cause issues if you are trying to run a x? test). If
very large quadrat sizes are used, you risk missing subtle changes in spatial density.

You should wonder why if the density is not uniform across the space. Is there a covariate
(characteristic of the space that could be collected at every point in space) that could help
explain the difference in the intensity? For example, perhaps the elevation of an area could
be impacting the intensity of trees that thrive in the area. Or there could be a west/east or
north/south pattern such that the longitude or latitude impacts the intensity.

If there is a covariate, we can convert the covariate across the continuous spatial field into
discretized areas. We can then plot the relationship between the estimated point density
within the quadrat and the covariate regions to assess any dependence between variables.
If there is a clear relationship, the covariate levels can define new sub-regions within which
the density can be computed. This is the idea of normalizing data by some underlying
covariate.

The quadrat analysis approach has its advantages in that it is easy to compute and interpret;
however, it does suffer from the modifiable areal unit problem (MAUP) as the relationship

233

https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem

observed can change depending on the size and shape of the quadrats chosen. Another density-
based approach that will be explored next (less susceptible to the MAUP) is the kernel density
estimation process.

7.4.2.2 Kernel Density Estimation

The kernel density approach is an extension of the quadrat method. Like the quadrat
density, the kernel approach computes a localized density for subsets of the study area. Still,
unlike its quadrat density counterpart, the sub-regions overlap, providing a moving sub-region
window. A kernel defines this moving window. The kernel density approach generates a grid
of density values whose cell size is smaller than the kernel window’s. Each cell is assigned the
density value computed for the kernel window centered on that cell.

A kernel not only defines the shape and size of the window, but it can also weight the points
following a well-defined kernel function. The simplest function is a basic kernel where each
point in the window is assigned equal weight (uniform kernel). Some popular kernel functions
assign weights to points inversely proportional to their distances to the kernel window center.
A few such kernel functions follow a Gaussian or cubic distribution function. These functions
tend to produce a smoother density map.

n

a(s) = =D Kls =)

i=1

where sq, ..., s,, are the locations of the observed points (typically specified by longitude and
latitude),

Ky (x) = H|72K(H2x)

H is the bandwidth matrix, and K is the kernel function, typically assumed multivariate
Gaussian. Still; it could be another symmetric function that decays to zero as it moves away
from the center.

To incorporate covariates into kernel density estimation, we can estimate a normalized den-
sity as a function of a covariate; we notate this as p(Z(s)) where Z(s) is a continuous spatial
covariate. There are three ways to estimate this: ratio, re-weight, or transform. We will not
delve into the differences between these methods but note that there is more than one way to
estimate p. This is a non-parametric way to estimate the intensity.

234

7.4.2.3 Data Example and R Code

Below is a point pattern giving the locations of 3605 trees in a tropical rain forest.

library(spatstat)
plot(bei)

Below are two pixel images of covariates, the elevation and slope (gradient) of the elevation in
the study region.

plot(bei.extra$elev)

bei.extra$elev

140

120

plot(bei.extra$grad)

235

bei.extra$grad

0.05 0.15 0.25

Let’s plot the points on top of the covariates to see if we can see any relationships.

plot(bei.extra$elev, main = "")
plot(bei, add = TRUE, cex 0.3, pch = 16, cols = "white")

140

120

plot(bei.extra$grad, main = "")
plot(bei, add = TRUE, cex

]
o
w

e}
O
(=2

= 16, cols = "white")

0.05 0.15 0.25

We could convert the image above of the elevation to a tesselation, count the number of points
in each region using quadratcount, and plot the quadrat counts.

236

elev <- bei.extra$elev
Z <- cut(elev, 4, labels=c("Low", "Med-Low", "Med-High", "High"))
textureplot(Z, main = "")

_ : IUI[I[TI; 75+

Med-

[=

4+ + | Low

Y <- tess(image = Z)
gc <- quadratcount(bei, tess = Y)
plot(qc)

qc

Low Med-High

intensity(qc)

tile
Low Med-Low Med-High High
0.002259007 0.006372523 0.008562862 0.005843516

Using a non-parametric kernel density estimation, we can estimate the intensity as a function
of the elevation.

237

rh <- rhohat(bei, elev)

plot (rh)
rh
N
—
o
o
—~~
>
1) ©
s 8
a o
o
=)
o
o
120 130 140 150 160
elev

Then predict the intensity based on this function.

prh <- predict(rh)
plot(prh, main = "")
plot(bei, add = TRUE, cols = "white", cex = .2, pch = 16)

0.008

0.002

Contrast this to a simple kernel density estimate without a covariate:
dbei <- density(bei)

plot(dbei, main = "")
plot(bei, add = TRUE, cols = "white", cex = .2, pch = 16)

238

0.005 0.015

par (mfrow=c(1,2))
plot(prh, main = "With Covariate")
plot(dbei, main = "Without Covariate")

With Covariate Without Covariate

0.002
0.005

7.4.3 Parametric Intensity Estimation

Beyond kernel density estimates, we may want to model this intensity with a parametric model.
We’ll use a log-link function between the linear model and our intensity.

We assume log(A(s)) = 5, for a uniform Poisson process.

ppm(bei ~ 1)

Stationary Poisson process
Fitted to point pattern dataset 'bei'
Intensity: 0.007208
Estimate S.E. CI95.1lo CI95.hi Ztest Zval
log(lambda) -4.932564 0.01665742 -4.965212 -4.899916 ***x -296.1182

We may think that the x coordinate linearly impacts the intensity, log(\(s)) = B, + [;x.

239

ppm(bei ~ x)

Nonstationary Poisson process
Fitted to point pattern dataset 'bei'

Log intensity: -~x
Fitted trend coefficients:

(Intercept) b
-4.5577338857 -0.0008031298

Estimate S.E. CI9s.1o0 CI95.hi Ztest

(Intercept) -4.5577338857 3.040310e-02 -4.6173228598 -4.498144912 k% k

X -0.0008031298 5.863308e-05 -0.0009180485 -0.000688211 *okk
Zval
(Intercept) -149.91019
X -13.69755

We may think that the x and y coordinates linearly impact the intensity, log(A(s)) = By +
Bz + Boy.

ppm(bei ~ x + y)

Nonstationary Poisson process
Fitted to point pattern dataset 'bei'

Log intensity: ~x + y
Fitted trend coefficients:

(Intercept) X y
-4.7245290274 -0.0008031288 0.0006496090

Estimate S.E. CI95.1o CI95.hi Ztest
(Intercept) -4.7245290274 4.305915e-02 -4.8089234185 -4.6401346364 *ok ok
X -0.0008031288 5.863311e-05 -0.0009180476 -0.0006882100 *kk
y 0.0006496090 1.157132e-04 0.0004228153 0.0008764027 *okok
Zval
(Intercept) -109.721827
X -13.697530
y 5.613957

240

We could use a variety of models based solely on the x and y coordinates of their location:

(mod <- ppm(bei ~ polynom(x,y,2))) #quadratic relationship

Nonstationary Poisson process

Fitted to point pattern dataset 'bei'
Log intemsity: ~x + y + I(x72) + I(x *x y) + I(y"2)
Fitted trend coefficients:

I(x"2)
1.625968e-06

I(x *y)
-2.836387e-06

(Intercept) X y
-4.275762e+00 -1.609187e-03 -4.895166e-03

I(y~2)
1.331331e-05

Estimate S.E. CI9s.1o0 CI95.hi Ztest
(Intercept) -4.275762e+00 7.811138e-02 -4.428857e+00 -4.122666e+00 *okok
X -1.609187e-03 2.440907e-04 -2.087596e-03 -1.130778e-03 *okok
y -4.895166e-03 4.838993e-04 -5.843591e-03 -3.946741e-03 *okk
I(x"2) 1.625968e-06 2.197200e-07 1.195325e-06 2.056611e-06 *okok
I(x * y) -2.836387e-06 3.511163e-07 -3.524562e-06 -2.148212e-06 * ok k
I(y~2) 1.331331e-05 8.487506e-07 1.164979e-05 1.497683e-05 *okk
Zval
(Intercept) -54.739290
X -6.592577
y -10.116084
I(x"2) 7.400185
I(x * y) -8.078197
I(y~2) 15.685769

(modl <- ppm(bei ~ I(x > 50))) #threshold
Nonstationary Poisson process

Fitted to point pattern dataset 'bei'

Log intensity: ~I(x > 50)
Fitted trend coefficients:

(Intercept) I(x > 50)TRUE
-4.3790111 -0.5960561

241

Estimate S.E. CI95.1o0

require(splines)

Loading required package: splines

(mod2 <- ppm(bei ~ bs(x) + bs(y))) #B-spline

Nonstationary Poisson process
Fitted to point pattern dataset 'bei'

Log intensity: ~bs(x) + bs(y)

Fitted trend coefficients:

3

CI95.hi Ztest
(Intercept) -4.3790111 0.05471757 -4.4862556 -4.2717666
I(x > 50)TRUE -0.5960561 0.05744408 -0.7086444 -0.4834677

bs(y)1

Zval

**x*x -80.02935
**x* -10.37628

CI95.hi Ztest

.35025488
.70504961
.02277098
.16297118
.43616886
.34657213
.11686724

* k%
*kkk

%k %k xk
* %k
%k xk

bs(y)2

Zval

.8210784
.9294608
. 7845376
.3311487
.8887526
.8930655
.6372824

(Intercept) bs(x)1 bs(x)2 bs(x)
-3.49662617 -2.04025568 -0.23163941 -1.36342361 -1.79118390 -0.57815937

bs(y)3
-0.05630791

Estimate S.E. CI95.1o

(Intercept) -3.49662617 0.07468060 -3.6429974
bs(x)1 -2.04025568 0.17102665 -2.3754617
bs(x)2 -0.23163941 0.12980360 -0.4860498
bs(x)3 -1.36342361 0.10227353 -1.5638760
bs(y)1 -1.79118390 0.18113345 -2.1461989
bs(y)2 -0.57815937 0.11815893 -0.8097466
bs(y)3 -0.05630791 0.08835629 -0.2294831
plot(predict (mod))

242

predict(mod)

plot(predict (modl))

predict(mod1l)

plot (predict (mod2))

predict(mod?2)

243

0.02 0.03

0.005

0.01 0.012

0.007

0.005 0.015 0.025

We can compare models using a likelihood ratio test.
hom <- ppm(bei ~ 1)

anova(hom, mod, test = 'Chi')

Analysis of Deviance Table

Model 1: ~1 Poisson

Model 2: ~x + y + I(x72) + I(x * y) + I(y~2) Poisson
Npar Df Deviance Pr(>Chi)

1 1

2 6 5 604.15 < 2.2e-16 *x*x

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Also, considering the residuals, we should see if there is a pattern where our model has errors
in predicting the intensity.

diagnose.ppm(mod, which="smooth")

Smoothed raw residuals

Model diagnostics (raw residuals)
Diagnostics available:
smoothed residual field
range of smoothed field = [-0.004988, 0.006086]

L

69’

%

As we saw with the kernel density estimation, the elevation plays a role in the intensity of
trees. Let’s add that to our model,

244

log(A(s)) = By + By Elevation(s)

(mod2 <- ppm(bei ~ elev))

Nonstationary Poisson process
Fitted to point pattern dataset 'bei'

Log intensity: ~elev
Fitted trend coefficients:

(Intercept) elev
-5.63919077 0.00488995

Estimate S.E. CI95.1o CI95.hi Ztest Zval
(Intercept) -5.63919077 0.304565582 -6.2361283457 -5.042253203 **xx —-18.515522
elev 0.00488995 0.002102236 0.0007696438 0.009010256 * 2.326071

diagnose.ppm(mod2, which="smooth")

Smoothed raw residuals

Model diagnostics (raw residuals)
Diagnostics available:
smoothed residual field
range of smoothed field = [-0.004413, 0.007798]

plot (effectfun(mod2))

245

effectfun(mod?2)

(o]
N~
o
o
o
3 27
2 8
< o
q —
(o]
8]
o [[[[[
120 130 140 150 160
elev

But the relationship may not be linear, so let’s try a quadratic relationship with elevation,

log(A\(s)) = By + (3, Elevation(s) + Sy Elevation®(s)

(mod2 <- ppm(bei ~ polynom(elev,2)))

Nonstationary Poisson process
Fitted to point pattern dataset 'bei'

Log intensity: -~elev + I(elev™2)
Fitted trend coefficients:

(Intercept) elev I(elev™2)
-1.379706e+02 1.847007e+00 -6.396003e-03

Estimate S.E. CI95.1o0 CI95.hi Ztest
(Intercept) -1.379706e+02 6.7047209548 -1.511116e+02 -124.8295945 *% ok
elev 1.847007e+00 0.0927883205 1.665145e+00 2.0288686 %%k
I(elev™2) -6.396003e-03 0.0003207726 -7.024705e-03 -0.0057673 %%k
Zval
(Intercept) -20.57813
elev 19.90560

I(elev™2) -19.93937

246

diagnose.ppm(mod2, which="smooth")

Smoothed raw residuals

Model diagnostics (raw residuals)
Diagnostics available:
smoothed residual field
range of smoothed field = [-0.005641, 0.006091]

plot(effectfun(mod2))

effectfun(mod2)
A
o
S _
. ©
> —
L«
L 8 4
< 3
T
S
2 | | | | |
120 130 140 150 160
elev

7.4.4 Detecting Interaction Effects

Classical tests about the interaction effects between points are based on derived distances.

247

o Pairwise distances: d;; = |[s; — s,|| (pairdist)

pairdist(bei) [1:10,1:10] #distance matrix for each pair of points

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.0000 1025.97671 1008.73600 1012.76608 969.054054 964.316302
[2,] 1025.9767 0.00000 19.03786 13.26084 56.922755 61.762205
[3,] 1008.7360 19.03786 0.00000 10.01249 40.429692 45.845065
[4,] 1012.7661 13.26084 10.01249 0.00000 43.729281 48.509381
[65,] 969.0541 56.92275 40.42969 43.72928 0.000000 5.920304
[6,] 964.3163 61.76221 45.84507 48.50938 5.920304 0.000000
[7,] 973.0970 54.02814 40.31724 40.88239 11.601724 11.412712
[8,] 959.1238 71.28324 59.21976 58.54955 26.109385 21.202123
[9,] 961.3980 73.63457 63.88153 61.61980 35.327751 31.005806
[10,] 928.8108 158.87769 154.57400 149.57837 128.720472 123.704850
[,7] [,8] [,9] [,10]
[1,] 973.09701 959.12378 961.39801 928.81077
[2,] 54.02814 71.28324 73.63457 158.87769
[3,] 40.31724 59.21976 63.88153 154.57400
[4,] 40.88239 58.54955 61.61980 149.57837
[5,] 11.60172 26.10939 35.32775 128.72047
[6,] 11.41271 21.20212 31.00581 123.70485
[7,] 0.00000 19.34580 26.45695 120.34168
[8,] 19.34580 0.00000 10.50952 102.61822
[9,] 26.45695 10.50952 0.00000 93.90575
[10,] 120.34168 102.61822 93.90575 0.00000

o Nearest neighbor distances: t; = min;,; d;; (nndist)

mean(nndist(bei)) #average first nearest neighbor distance

[1] 4.329677

mean (nndist(bei,k=2)) #average second nearest neighbor distance

[1] 6.473149

ANN <- apply(nndist(bei, k=1:100), 2, mean) #Mean for 1,...,100 nearest neighbors
plot (ANN ~ I(1:100), type="b", main=NULL, las=1)

248

40 —

ANN
w
o

I

20

I I I I I I
0 20 40 60 80 100

1(1:100)

o Empty space distances: d(u) = min, ||u—s;||, the distance from a fixed reference location
u in the window to the nearest data point (distmap)

plot(distmap(bei)) #map of the distances to the nearest observed point

distmap(bei)

60 100

20

7.4.4.1 F function

Consider the empty-space distance.

o Fix the observation window A. The distribution of d(u), the minimum distance to an
observed point, depends on A, which is hard to derive in closed form.

Consider the CDF,

249

= P(at least one point within radius r of u)

= 1 — P(no points within radius r of u)

For a homogeneous Poisson process on R?,

F(r)y=1—¢e?
« Consider the process defined on R? and we only observe it on A. The observed distances

are biased relative to the “true” distances, which results in “edge effects”.

o If you define a set of locations uq,...,u,, for estimating F(r) under an assumption of
statitionary, the estimator

i I(d(u;) <)

=1

Bry=—

is biased due to the edge effects.

e There are a variety of corrections.

— One example is to not consider w’s within distance r of the boundary (border
correction).

— Another example is considering it a censored data problem and using a spatial
variant of the Kaplan-Meier correction.

Compare the F(r) to the F(r) under a homogenous Poisson process.

plot(Fest(bei)) #km is kaplan meier correction, bord is the border correction (reduced sampl

250

Fest(bei)

© _|
o
T < |
o
o _|
o I I I I I
0 5 10 15 20
r (metres)

In this plot, we observe fewer short distances than expected if it were a completely random

Poisson point process (F},,;;) and thus many longer distances to observed points. Thus, more

spots don’t have many points (larger distances to observed points), meaning points are more
clustered than expected from a uniform distribution across the space.

7.4.4.2 G function

Working instead with the nearest-neighbor distances from points themselves (¢; = min;; d;;),
we define

G(r)=P(t; <r)

for an arbitrary observed point s;. We can estimate it using our observed $ t_i$’s.

As before, we may or may not make an edge correction.

For a homogeneous Poisson process on R?,

G(r)=1—e >

Compare the G(r) to the G(r) under a homogenous Poisson process.

251

plot(Gest(bei))

Gest(bei)
o0}
@
5 I
o |
© | | | | |
0 2 4 6 8
r (metres)

Here we observe that we see more short nearest-neighbor distances than expected if it were a
completely random Poisson point process. Thus, the points are more clustered than expected
from a uniform distribution across the space.

7.4.4.3 K function

Another approach is to consider Ripley’s K function, which summarizes the distance be-
tween points. It divides the mean of the total number of points at different distance lags from
each point by the area event density. In other words, it is concerned with the number of events
falling within a circle of radius r of an event.

1
K(r)= XE(points within distance r of an arbitrary point)

Under CSR (uniform intensity), we’d expect K (r) = 72 because that is the area of the circle.
Points that cluster more than you'd expect corresponds to K(r) > 7r? and spatial repulsion
corresponds to K(r) < 7r2.

Below, we have an estimate of the K function (black solid) along with the predicted K function
if H, were true (red dashed). For this set of trees, the points are more clustered than you’d
expect for a homogenous Poisson process.

252

plot (Kest(bei))

number of data points exceeds 3000 - computing border correction estimate only

Kest(bel)
.
o
O p—
o
q
= o |
¥ 8 _
o
N
o —
| | | | | | |
0 20 40 60 80 100 120
r (metres)

7.4.4.4 L function

It is hard to see differences between the estimated K and expected functions. An alternative
is to transform the values so that the expected values are horizontal. The transformation is
calculated as follows:

L(r)=+/K(r)/m—d

plot (Kest(bei),sqrt(./pi) - r ~ r)

number of data points exceeds 3000 - computing border correction estimate only

253

Kest(bel)

o _
i
T o
£ 8
< o A
——
o —
| | | | | | |
0 20 40 60 80 100 120
r (metres)

7.4.4.5 Pair Correlation Function

The second-order intensity function is

E[N(ds;)N(ds,)]
sy |,ldso |0 |dsy||dss]

Ao(81,89) =

where s; # s5. If A(s) is constant and

Ag(51,82) = Ag(sy — 83) = Ag(s3 — 1)
then we call N second-order stationary.

We can define ¢ as the pair correlation function (PCF),

)‘2 (817 82)

9(s1:82) = Ty

7 Als1)A(s2)
In R, if we assume stationarity and isotropy (direction of distance is not important), we can
estimate g(r) where r = ||s; — s,||. If a process has an isotropic pair correlation function, then

our K function can be defined as

K(r) = 27T/ ug(u)du,r >0
0

254

plot(pct (bei))

pcf(bei)
8] A
gRipley(r)
L _| N
— - o gTrans(r)
s SS9\ e Ipois(r)
Lo —
E— — —— e e — I
0 20 40 60 80 100 120
r (metres)

If g(r) = 1, then we have a CSR process. If g(r) > 1, it implies a cluster process and if
g(r) < 1, it implies an inhibition process. In particular, if g(r) = 0 for r; < r, it implies a hard
core process (no point pairs within this distance).

7.4.4.6 Envelopes
We want to test H,: CSR (constant intensity) to understand whether points are closer or
further away from each other than we’d expect with a Poisson process.

We can compare the estimated function to the theoretical for any of these 3 (4) functions, but
that doesn’t tell us how far our estimate might be from the truth under random variability. So
we can simulate under our null hypothesis (CSR), say B times, and for each time, we estimate
the function. Then we create a single global test:

D; =max |H,(r)— H(r)|, i=1,..,B
s

where H(r) is the theoretical value under CSR. Then we define D, as the kth largest among
the D,. The “global” envelopes are then.

255

Then the test that rejects 1?1 (estimate from our observations) ever wanders outside
(L(r),U(r)) has size « =1 — k/B.

#See Example Code Below: Runs Slowly
plot(envelope(bei, Fest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, b3, b4, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99.

Done.

envelope(bei, Fest, global = TRUE)

,—::::““E;;;Z;iﬂ

- Frneolr)
Fai(r)
I/:\Io(r)

[[[[[

0 5 10 15 20

F(r)
0.4

r (metres)

#plot (envelope(bei, Gest, global=TRUE))
#plot (envelope(bei, Kest, global=TRUE))
#plot (envelope(bei, Lest, global=TRUE))
#plot(envelope(bei, pcf, global=TRUE))

7.4.5 Cluster Poisson Processes

A Poisson cluster process is defined by

256

1. Parent events form Poisson process with intensity A.

2. Each parent produces a random number M of children, iid for each parent according to
a discrete distribution p,,,.

3. The positions of the children relative to parents are iid according to a bivariate pdf.

By convention, the point pattern consists of only the children, not the parents.

7.4.5.1 Matern Process

¢ Homogeneous Poisson parent process with intensity A.
¢ Poisson distributed number of children, mean = p

e Children uniformly distributed on disc of radius, r, centered at the parent location

Let’s simulate some data from this process.
win <- owin(c(0, 100), c(0, 100))

clustl <- rMatClust(50/10000, r = 4, mu = 5, win = win)
plot(clustl)

clustl

quadrat.test(clustl)

Chi-squared test of CSR using quadrat counts
data: clustl

X2 = 106.86, df = 24, p-value = 3.969e-12
alternative hypothesis: two.sided

257

Quadrats: 5 by 5 grid of tiles

plot(envelope(clustl, Fest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99.

Done.
envelope(clustl, Fest, global = TRUE)
S () |
T L] FAtheo(r)
© | Fri(r)
o _| I:Io(r)
o
| | | | | |
0 2 4 6 8 10

#plot(envelope(clustl, Gest, global=TRUE))
#plot (envelope(clustl, Kest, global=TRUE))
#plot (envelope(clustl, Lest, global=TRUE))

If we increase the radius of space for the children, we won’t notice that it is clustered.

clust2 <- rMatClust(50/10000, r = 40, mu = 5, win = win)
plot (clust2)

258

O ORC

o1%) O o
SRR
& 80;0@.%)@ 3
e

b0 3 OOO

quadrat.test(clust2)

Chi-squared test of CSR using quadrat counts

data: clust2
X2 = 33.555, df = 24, p-value = 0.1858
alternative hypothesis: two.sided

Quadrats: 5 by 5 grid of tiles

plot (envelope(clust2, Fest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99.

Done.

259

envelope(clust2, Fest, global = TRUE)

(o0] AN
© T Fobs(r)
— T Ftheo(r)
N < N
L o Fri(r)
| N
/Fm@/
o
S
[[[[[[
0 1 2 3 4 5

#plot(envelope(clust2, Gest, global=TRUE))
#plot (envelope(clust2, Kest, global=TRUE))
#plot (envelope(clust2, Lest, global=TRUE))

7.4.5.2 Thomas Process

e Homogeneous Poisson parent process
e Poisson distributed number of children

e Locations of children according to an isotropic bivariate normal distribution with vari-

alnce 0'2

clust3 <- rThomas(50/10000, scale = 2, mu = 5, win = win)
plot(clust3)

260

quadrat.test(clust3)

Chi-squared test of CSR using quadrat counts

data: clust3
X2 = 81.271, df = 24, p-value = 7.624e-08
alternative hypothesis: two.sided

Quadrats: 5 by 5 grid of tiles

plot(envelope(clust3, Fest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, b3, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99.

Done.

261

envelope(clust3, Fest, global = TRUE)

(e0] N
o | —— obs(r)
% < : T Iitheo(r)
o
Fri(r)
] N
o | I:Io(r)
o
[[[[[
0 2 4 6 8

plot(envelope(clust3, Gest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99.

Done.

262

envelope(clust3, Gest, global = TRUE)

© _|

] Gl
’: q— n T Gtheo(r)
\L-')/ o

o |

o

1.0 15 2.0 2.5 3.0

plot(envelope(clust3, Kest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8,
21, 22, 23, 24, 25, 26,
41, 42, 43, 44, 45, 46,
61, 62, 63, 64, 65, 66,
81, 82, 83, 84, 85, 86,
99.

Done.

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
2r, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

263

39, 40,
59, 60,
79, 80,

envelope(clust3, Kest, global = TRUE)

8 | Qobs(r)
L0
-~ - T Ktheo(r)
~—r] N
X .
8 | fhl(r)
e K|0 r
o 4 =—m——
[[[[[[
0 5 10 15 20 25

plot(envelope(clust3, Lest, global=TRUE))

Generating 99 simulations of CSR

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99.

Done.

264

envelope(clust3, Lest, global = TRUE)

o — >
S T
3 N T Ltheo(r)
— 8 — A
Lni(r)
O — N
Llo(r)
o p—

7.4.5.3 Fitting Cluster Poisson Process Models
If you believe the data are clustered, you can fit a model that accounts for any trends in A(s)
and clustering in points in the generation process. Two potential models you can fit are the

Thomas and the Matern model.

plot (redwood)

redwood

C)q@ éS%g
é)gg@

s

(OIN©)
®)

\>4

summary (kppm(redwood, ~1, "Thomas"))

Stationary cluster point process model
Fitted to point pattern dataset 'redwood'

265

Fitted by minimum contrast
Summary statistic: K-function
Minimum contrast fit (object of class "minconfit")
Model: Thomas process
Fitted by matching theoretical K function to redwood

Internal parameters fitted by minimum contrast ($par):
kappa sigma?2
23.548568483 0.002213841

Fitted cluster parameters:
kappa scale
23.54856848 0.04705148
Mean cluster size: 2.632856 points

Converged successfully after 105 function evaluations

Starting values of parameters:
kappa sigma?2

62.000000000 0.006173033

Domain of integration: [0 , 0.25]

Exponents: p= 2, g= 0.25

Point process model

Fitted to data: X

Fitting method: maximum likelihood (Berman-Turner approximation)

Model was fitted using glm()

Algorithm converged

Call:

ppm.ppp(Q = X, trend = trend, rename.intercept = FALSE, covariates = covariates,
covfunargs = covfunargs, use.gam = use.gam, forcefit = TRUE,
improve.type = ppm.improve.type, improve.args = ppm.improve.args,
nd = nd, eps = eps)

Edge correction: "border"
[border correction distance r = 0]

Quadrature scheme (Berman-Turner) = data + dummy + weights

Data pattern:

Planar point pattern: 62 points

Average intensity 62 points per square unit
Window: rectangle = [0, 1] x [-1, 0] units

266

(1 x 1 units)
Window area = 1 square unit

Dummy quadrature points:
32 x 32 grid of dummy points, plus 4 corner points
dummy spacing: 0.03125 units

Original dummy parameters: =
Planar point pattern: 1028 points
Average intensity 1030 points per square unit
Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)
Window area = 1 square unit
Quadrature weights:
(counting weights based on 32 x 32 array of rectangular tiles)

All weights:

range: [0.000326, 0.000977] total: 1
Weights on data points:

range: [0.000326, 0.000488] total: 0.0277
Weights on dummy points:

range: [0.000326, 0.000977] total: 0.972

FITTED :

Stationary Poisson process
-——— Intensity: ----
Uniform intensity:

[1] 62

Estimate S.E. CI95.lo CI95.hi Ztest Zval
(Intercept) 4.127134 0.1270001 3.878219 4.37605 *xk 32.49709

Fitted regular parameters (theta):
(Intercept)
4.127134

Fitted exp(theta):
(Intercept)

267

——————————— CLUSTER -—————————-
Model: Thomas process

Fitted cluster parameters:
kappa scale
23.54856848 0.04705148
Mean cluster size: 2.632856 points

Final standard error and CI
(allowing for correlation of cluster process):

Estimate S.E. CI9.lo CI95.hi Ztest Zval
(Intercept) 4.127134 0.2329338 3.670593 4.583676 *** 17.71806

——————————— cluster strength indices —-—-—-————-—-

Sibling probability 0.6041858

Count overdispersion index (on original window): 3.408838
Cluster strength: 1.526438

Spatial persistence index (over window): O

Bound on distance from Poisson process (over window): 1
= min (1, 115.0878, 6030.864, 5306724, 76.60044)

Bound on distance from MIXED Poisson process (over window): 1

Intensity of parents of nonempty clusters: 21.85607

Mean number of offspring in a nonempty cluster: 2.836741

Intensity of parents of clusters of more than one offspring point: 17.39995
Ratio of parents to parents-plus-offspring: 0.2752655 (where 1 = Poisson

process)
Probability that a typical point belongs to a nontrivial cluster: 0.9281271

AIC(kppm(redwood, ~1, "Thomas", method='palm'))

[1] -2477.982

summary (kppm(redwood, ~x, "Thomas"))

Inhomogeneous cluster point process model

268

Fitted to point pattern dataset 'redwood'
Fitted by minimum contrast

Summary statistic: inhomogeneous K-function
Minimum contrast fit (object of class "minconfit")
Model: Thomas process
Fitted by matching theoretical K function to redwood

Internal parameters fitted by minimum contrast ($par):
kappa sigma?2
22.917939455 0.002148329

Fitted cluster parameters:

kappa scale
22.91793945 0.04635007
Mean cluster size: [pixel image]

Converged successfully after 85 function evaluations

Starting values of parameters:
kappa sigma?2

62.000000000 0.006173033

Domain of integration: [O , 0.25]

Exponents: p= 2, g= 0.25

Point process model

Fitted to data: X

Fitting method: maximum likelihood (Berman-Turner approximation)

Model was fitted using glm()

Algorithm converged

Call:

ppm.ppp(Q = X, trend = trend, rename.intercept = FALSE, covariates = covariates,
covfunargs = covfunargs, use.gam = use.gam, forcefit = TRUE,
improve.type = ppm.improve.type, improve.args = ppm.improve.args,
nd = nd, eps = eps)

Edge correction: "border"
[border correction distance r = 0]

Quadrature scheme (Berman-Turner) = data + dummy + weights
Data pattern:

Planar point pattern: 62 points
Average intensity 62 points per square unit

269

Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)
Window area = 1 square unit

Dummy quadrature points:
32 x 32 grid of dummy points, plus 4 corner points
dummy spacing: 0.03125 units

Original dummy parameters: =
Planar point pattern: 1028 points
Average intensity 1030 points per square unit
Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)
Window area = 1 square unit
Quadrature weights:
(counting weights based on 32 x 32 array of rectangular tiles)

All weights:

range: [0.000326, 0.000977] total: 1
Weights on data points:

range: [0.000326, 0.000488] total: 0.0277
Weights on dummy points:

range: [0.000326, 0.000977] total: 0.972

FITTED :

Nonstationary Poisson process
-——- Intensity: ----

Log intensity: ~x

Fitted trend coefficients:

(Intercept) X
3.9745791 0.2976994

Estimate S.E. CI95.1lo CI95.hi Ztest Zval
(Intercept) 3.9745791 0.2639734 3.4572007 4.491958 **x 15.0567391
X 0.2976994 0.4409396 -0.5665264 1.161925 0.6751478

Fitted regular parameters (theta):
(Intercept) X

270

3.9745791 0.2976994

Fitted exp(theta):
(Intercept) X
53.227709 1.346757

——————————— CLUSTER -----——"——-
Model: Thomas process

Fitted cluster parameters:

kappa scale
22.91793945 0.04635007
Mean cluster size: [pixel image]

Final standard error and CI
(allowing for correlation of cluster process):
Estimate S.E. CI95.1o CI95.hi Ztest

Zval

(Intercept) 3.9745791 0.4641811 3.064801 4.884357 *%x* 8.5625609

X 0.2976994 0.7850129 -1.240898 1.836296
----------- cluster strength indices ----———--—-

Mean sibling probability 0.6177764

Count overdispersion index (on original window): 3.494409
Cluster strength: 1.616269

Spatial persistence index (over window): O

Bound on distance from Poisson process (over window): 1
= min (1, 118.5459, 6380.467, 5790004, 78.82096)

AIC(kppm(redwood, ~x, "Thomas", method='palm'))

[1] -2465.114

summary (kppm(redwood, ~1, "MatClust"))

Stationary cluster point process model
Fitted to point pattern dataset 'redwood'
Fitted by minimum contrast
Summary statistic: K-function
Minimum contrast fit (object of class "minconfit")

271

0.3792287

Model: Matern cluster process
Fitted by matching theoretical K function to redwood

Internal parameters fitted by minimum contrast ($par):
kappa R
24.55865127 0.08653577

Fitted cluster parameters:
kappa scale
24.55865127 0.08653577
Mean cluster size: 2.524569 points

Converged successfully after 57 function evaluations

Starting values of parameters:
kappa R

62.00000000 0.07856865

Domain of integration: [O , 0.25]

Exponents: p= 2, gq= 0.25

Point process model

Fitted to data: X

Fitting method: maximum likelihood (Berman-Turner approximation)

Model was fitted using glm()

Algorithm converged

Call:

ppm.ppp(Q = X, trend = trend, rename.intercept = FALSE, covariates = covariates,
covfunargs = covfunargs, use.gam = use.gam, forcefit = TRUE,
improve.type = ppm.improve.type, improve.args = ppm.improve.args,
nd = nd, eps = eps)

Edge correction: "border"
[border correction distance r = 0]

Quadrature scheme (Berman-Turner) = data + dummy + weights

Data pattern:

Planar point pattern: 62 points

Average intensity 62 points per square unit

Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)

Window area = 1 square unit

272

Dummy quadrature points:
32 x 32 grid of dummy points, plus 4 corner points
dummy spacing: 0.03125 units

Original dummy parameters: =
Planar point pattern: 1028 points
Average intensity 1030 points per square unit
Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)
Window area = 1 square unit
Quadrature weights:
(counting weights based on 32 x 32 array of rectangular tiles)

All weights:

range: [0.000326, 0.000977] total: 1
Weights on data points:

range: [0.000326, 0.000488] total: 0.0277
Weights on dummy points:

range: [0.000326, 0.000977] total: 0.972

FITTED :

Stationary Poisson process
---- Intensity: --——-
Uniform intensity:

[1] 62

Estimate S.E. CI9.lo CI95.hi Ztest Zval
(Intercept) 4.127134 0.1270001 3.878219 4.37605 **xx 32.49709

Fitted regular parameters (theta):
(Intercept)
4.127134

Fitted exp(theta):

(Intercept)
62

273

Model: Matern cluster process

Fitted cluster parameters:
kappa scale
24.55865127 0.08653577
Mean cluster size: 2.524569 points

Final standard error and CI
(allowing for correlation of cluster process):

Estimate S.E. CI9.lo CI95.hi Ztest Zval
(Intercept) 4.127134 0.2303018 3.675751 4.578518 **xx 17.92054

——————————— cluster strength indices -——————---

Sibling probability 0.6338109

Count overdispersion index (on original window): 3.32639
Cluster strength: 1.73083

Spatial persistence index (over window): O

Bound on distance from Poisson process (over window): 1
= min (1, 114.0685, 6809.832, 895130.7, 81.56782)

Bound on distance from MIXED Poisson process (over window): 1

Intensity of parents of nonempty clusters: 22.59168

Mean number of offspring in a nonempty cluster: 2.744373

Intensity of parents of clusters of more than one offspring point: 17.62592
Ratio of parents to parents-plus-offspring: 0.2837227 (where 1 = Poisson
process)

Probability that a typical point belongs to a nontrivial cluster: 0.9199071

AIC(kppm(redwood, ~1, "MatClust",method='palm'))

[1] -2476.282

summary (kppm(redwood, ~x, "MatClust"))

Inhomogeneous cluster point process model
Fitted to point pattern dataset 'redwood'
Fitted by minimum contrast

Summary statistic: inhomogeneous K-function

274

Minimum contrast fit (object of class "minconfit")
Model: Matern cluster process
Fitted by matching theoretical K function to redwood

Internal parameters fitted by minimum contrast ($par):
kappa R
23.89160402 0.08523814

Fitted cluster parameters:

kappa scale
23.89160402 0.08523814
Mean cluster size: [pixel image]

Converged successfully after 55 function evaluations

Starting values of parameters:
kappa R

62.00000000 0.07856865

Domain of integration: [0 , 0.25]

Exponents: p= 2, g= 0.25

Point process model

Fitted to data: X

Fitting method: maximum likelihood (Berman-Turner approximation)

Model was fitted using glm()

Algorithm converged

Call:

ppm.ppp(Q = X, trend = trend, rename.intercept = FALSE, covariates = covariates,
covfunargs = covfunargs, use.gam = use.gam, forcefit = TRUE,
improve.type = ppm.improve.type, improve.args = ppm.improve.args,
nd = nd, eps = eps)

Edge correction: "border"
[border correction distance r = 0]

Quadrature scheme (Berman-Turner) = data + dummy + weights

Data pattern:

Planar point pattern: 62 points

Average intensity 62 points per square unit

Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)

Window area = 1 square unit

275

Dummy quadrature points:
32 x 32 grid of dummy points, plus 4 corner points
dummy spacing: 0.03125 units

Original dummy parameters: =
Planar point pattern: 1028 points
Average intensity 1030 points per square unit
Window: rectangle = [0, 1] x [-1, 0] units
(1 x 1 units)
Window area = 1 square unit
Quadrature weights:
(counting weights based on 32 x 32 array of rectangular tiles)

All weights:

range: [0.000326, 0.000977] total: 1
Weights on data points:

range: [0.000326, 0.000488] total: 0.0277
Weights on dummy points:

range: [0.000326, 0.000977] total: 0.972

FITTED :

Nonstationary Poisson process
-——— Intensity: ----

Log intemnsity: ~x

Fitted trend coefficients:

(Intercept) X
3.9745791 0.2976994

Estimate S.E. CI95.1o CI95.hi Ztest Zval
(Intercept) 3.9745791 0.2639734 3.4572007 4.491958 **k*x 15,0567391
X 0.2976994 0.4409396 -0.5665264 1.161925 0.6751478

Fitted regular parameters (theta):
(Intercept) X
3.9745791 0.2976994

Fitted exp(theta):

276

(Intercept) X
53.227709 1.346757

----------- CLUSTER -----—————-
Model: Matern cluster process

Fitted cluster parameters:

kappa scale
23.89160402 0.08523814
Mean cluster size: [pixel image]

Final standard error and CI
(allowing for correlation of cluster process):

Estimate S.E. CI95.1o CI95.hi Ztest Zval
(Intercept) 3.9745791 0.4599425 3.073108 4.87605 *x* 8.6414699
X 0.2976994 0.7783921 -1.227921 1.82332 0.3824544

——————————— cluster strength indices ----------

Mean sibling probability 0.647109

Count overdispersion index (on original window): 3.409944
Cluster strength: 1.833736

Spatial persistence index (over window): 0

Bound on distance from Poisson process (over window): 1
= min (1, 117.8056, 7209.547, 977197.8, 83.95629)

AIC(kppm(redwood, ~x, "MatClust",method='palm'))

[1] -2463.417

We can then interpret the estimates for that process to tell us about the clustering.

INTERPRETATIONS

o theta: parameters for intensity trend

e kappa: average number of clusters per unit area

e scale: standard deviation of the distance of a point from its cluster center.
e mu: mean number of points per cluster

7.4.6 Inhibition Poisson Processes

If points “repel” each other, we need to account for that also.

277

7.4.6.1 Simple Sequential Inhibition

Each new point is generated uniformly in the window (space of interest) and independently
of preceding points. If the new point lies closer than r units from an existing point, it is
rejected, generating another random point. The process terminates when no further points

can be added.

plot(rSSI(r = 0.05, n = 200))

rSSI(r = 0.05, n = 200)

oo

90
BoSC
0
)
%
'0)
o 9o
> 9%
&) Q
0
o)
ogo%

7.4.6.2 Matern | Inhibition Model

Matern’s Model I first generates a homogeneous Poisson process Y (intensity = p). Any pairs
of points that lie closer than a distance r from each other are deleted. Thus, pairs of close
neighbors annihilate each other.

The probability an arbitrary point survives is e ™" 50 the intensity of the final point pattern
is A= pe*“mj.

7.4.7 Other Point Process Models
o Markov Point Processes: a large class of models that allow for interaction between points
(attraction or repulsion)

e Hard Core Gibbs Point Processes: a subclass of Markov Point Processes that allow for
interaction between points; no interaction is a Poisson point process

o Strauss Processes: a subclass of Markov Point Processes that allow for the repulsion
between pairs of points

278

e Cox Processes: a doubly stochastic Poisson process in which the intensity is a random
process and conditional on the intensity, the events are an inhomogeneous Poisson pro-
cess.

For more information on how to fit spatial point processes in R, see http://www3.uji.es/
~mateu/badturn.pdf.

7.5 Point Referenced Data (optional)

A spatial stochastic process is a spatially indexed collection of random variables,

{Y(s): s € DCR?

where d will typically be 2 or 3.

A realization from a stochastic process is sometimes called a sample path. We typically
observe a vector,

7.5.1 Gaussian Process

A Gaussian process (G.P.) has finite-dimensional distributions that are all multivariate normal,
and we define it using a mean and covariance function,

pu(s) = E(Y(s))
C(s1,89) = Cov(Y(s1),Y(s3))
As with time series and longitudinal data, we must consider the covariance of our data. Most
covariance models that we will consider in this course require that our data come from a
stationary, isotropic process such that the mean is constant across space, variance is con-

stant across space, and the covariance is only a function of the distance between locations
(disregarding the direction) such that

E(Y(s)) = E(Y(s + h)) = p
Cov(Y (s),Y (s + h)) = Cou(Y(0),Y (h)) = C(||h]])

279

http://www3.uji.es/~mateu/badturn.pdf
http://www3.uji.es/~mateu/badturn.pdf

7.5.2 Covariance Models

A covariance model that is often used in spatial data is called the Matern class of covariance
functions,

2

= i

(tp)" X, (d/p)

where X, is a modified Bessel function of order v. v is a smoothness parameter and if we let
v =1/2, we get the exponential covariance.

7.5.3 Variograms, Semivariograms

Beyond the standard definition of stationarity, there is another form of stationary (intrinsic
stationarity), which is when

Var(Y(s+ h) —Y(s)) depends only on h

When this is true, we call

Y (h) = %Var(Y(s +h) —Y(s))

the semivariogram and 2v(h) the variogram.

If a covariance function is stationary, it will be intrinsic stationary and

v(h) = C(0) = C(h) = C(0)(1 = p(h))
where C(0) is the variance (referred to as the sill).

First, to estimate the semivariogram, fit a trend so that you have a stationary process in your
residuals.

o Let Hy, ..., H, partition the space of possible lags, with h,, being a representative spatial
lag/distance in H,. Then use your residuals to estimate the empirical semivariogram.

R 1)
W) = 5T, €], 2 ())

o This is a non-parametric estimate of the semivariogram.

280

library(gstat)

Attaching package: 'gstat'

The following object is masked from 'package:spatstat.explore':
idw
coordinates(meuse) = ~x+y

estimatedVar <- variogram(log(zinc) ~ 1, data = meuse)

plot(estimatedVar)
|
o O
o ° ©
_ o -
0.6 o o 6 O
o
2 o
S 04 1 © B
©
>
£ o
[
? 02 - © u
o
T T T
500 1000 1500

distance

o If we notice a particular pattern in the points, we could try and fit a curve based on
correlation models.

Var.fitl <- fit.variogram(estimatedVar, model = vgm(l, "Sph", 900, 1))
plot(estimatedVar,Var.fit1)

281

|
o (@]
la) @)
] o) L
0.6 o o ©O
(0]
(&S]
G
= 0.4 —
S
=
e
[¢D]
? 0.2 4 N
[[[
500 1000 1500
distance

Var.fit2 <- fit.variogram(estimatedVar, model = vgm(1l, "Exp", 900, 1))
plot(estimatedVar,Var.fit2)

]
o (@]
(e] ° ©
_ o -
0.6 o o ©O
(O]
O
G
= 0.4 —
©
=
S
(O]
@ 0.2 4 B
I I I
500 1000 1500

distance

Var.fit3 <- fit.variogram(estimatedVar, model = vgm(1, "Gau", 900, 1))
plot(estimatedVar,Var.fit3)

282

|
o (@]
(@] (@]
— O -
0.6 o) o ©O
(0]
e o
L 04+ -
@
=
=
[¢D]
? 0.2 4 N
[[[
500 1000 1500
distance

Var.fit4 <- fit.variogram(estimatedVar, model = vgm(1l, "Mat", 900, 1))
plot(estimatedVar,Var.fit4)

]
o (@]
(e] ° ©
_ o -
0.6 o o ©O
(O]
O
G
= 04 — —
©
=
S
(O]
@ 0.2 4 B
I I I
500 1000 1500

distance

g = gstat::gstat(formula = log(zinc) ~ 1, model = Var.fit4, data = meuse)

7.5.4 Kriging

Section is under construction.

283

data(meuse)

data(meuse.grid)
coordinates(meuse) = ~x+y
coordinates(meuse.grid) = ~x+y

zinc.idw <- idw(zinc~1, meuse, meuse.grid)

[inverse distance weighted interpolation]

spplot(zinc.idw["varl.pred"], main = "zinc inverse distance weighted interpolations")

zinc inverse distance weighted interpolations

[128.4,463.9]
(463.9,799.4]
(799.4.1135]
(1135,1470]
(1470,1806]

zinc.ord <- predict(g, meuse.grid)

[using ordinary kriging]

spplot(zinc.ord["varl.pred"], main = "zinc ordinary kriging interpolations")

284

zinc ordinary kriging interpolations

g = gstat::gstat(formula = log(zinc) ~ sqrt(dist), model = Var.fit4, data = meuse)
zinc.uni <- predict(g, meuse.grid)

[using universal kriging]

spplot(zinc.uni["varl.pred"], main = "zinc universal kriging interpolations")

285

zinc universal kriging interpolations

7.6 Areal Data

Areal data can often be thought of as a “coarser-resolution” version of other data types, such
as

« average/aggregation of point reference data (a geostatistical field)

e a count of points within a boundary from a point process.

For areal data, we will explore relationships between aggregate summaries of observations
within boundaries while specifying spatial dependence regarding notions of neighborhoods
and spatial proximity. The boundary of areas can be considered polygons determined by a
closed sequence of ordered coordinates connected by straight line segments.

7.6.1 Polygons
Let’s look at an example to understand what we mean by polygons. Say we are interested in

the county-level data in North Carolina. We can read in a series of shapefiles and specify a
CRS (ellipsoid, datum, and projection) to project longitude and latitude onto a 2d surface.

library(spdep)

Loading required package: spData

286

To access larger datasets in this package, install the spDatalarge
package with: “install.packages('spDatalarge',
repos='https://nowosad.github.io/drat/', type='source')"

Attaching package: 'spData'

The following object is masked _by_ '.GlobalEnv':

world

library(sf)

nc <- st_read(system.file("shape/nc.shp", package="sf"), quiet=TRUE)
st_crs(nc) <- "+proj=longlat +datum=NAD27"

row.names(nc) <- as.character(nc$FIPSNO)

This data set includes some county-level information about births. Let’s look at the first
6 rows. This data set is not just a typical data frame but has geometric information. In
particular, the geometry field is a list of multi polygons, a series of coordinates that can be
connected to create polygons. They might be multi polygons in case one county may consist
of two or more closed polygons (separated by a body of water, such as an island).

head (nc)

Simple feature collection with 6 features and 14 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: -81.74107 ymin: 36.07282 xmax: -75.77316 ymax: 36.58965
Geodetic CRS: +proj=longlat +datum=NAD27

AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74
37009 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091
37005 0.061 1.231 1827 1827 Alleghany 37005 37005 3 487
37171 0.143 1.630 1828 1828 Surry 37171 37171 86 3188
37053 0.070 2.968 1831 1831 Currituck 37053 37053 27 508
37131 0.153 2.206 1832 1832 Northampton 37131 37131 66 1421
37091 0.097 1.670 1833 1833 Hertford 37091 37091 46 1452

SID74 NWBIR74 BIR79 SID79 NWBIR79 geometry
37009 1 10 1364 0 19 MULTIPOLYGON (((-81.47276 3...
37005 0 10 542 3 12 MULTIPOLYGON (((-81.23989 3...
37171 5 208 3616 6 260 MULTIPOLYGON (((-80.45634 3...
37053 1 123 830 2 145 MULTIPOLYGON (((-76.00897 3...

287

37131 9 1066 1606 3 1197 MULTIPOLYGON (((-77.21767 3...
37091 7 954 1838 5 1237 MULTIPOLYGON (((-76.74506 3...

st_geometry(nc)

Geometry set for 100 features

Geometry type: MULTIPOLYGON

Dimension: Xy

Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
Geodetic CRS: +proj=longlat +datum=NAD27

First 5 geometries:

MULTIPOLYGON (((-81.47276 36.23436, -81.54084 3...
MULTIPOLYGON (((-81.23989 36.36536, -81.24069 3...
MULTIPOLYGON (((-80.45634 36.24256, -80.47639 3...
MULTIPOLYGON (((-76.00897 36.3196, -76.01735 36...
MULTIPOLYGON (((-77.21767 36.24098, -77.23461 3...

If we plot these polygons and fill them with their own color, we can see each boundary, including
some counties that include islands (multiple polygons).

ggplot(nc) +
geom_sf (aes(fill = factor(CNTY_ID))) +
guides(fill = FALSE) + theme_classic()

Warning: The “<scale>" argument of “guides() cannot be "FALSE . Use "none" instead as

of ggplot2 3.3.4.
‘\\\

36.5°N 1

36.0°N 1

35.5°N 1

35.0°N 1

34.5°N 1

34.0°N 1

84°W 82°W 80°W 78°W 76°W

288

If we’d like to visualize an outcome spatially, we can change the fill to correspond to the value
of another variable and shade the color on a spectrum. Below are cases of Sudden Infant Death
(SID) in 1974 at a county level in North Carolina.

ggplot(nc) +
geom_sf (aes(fill = SID74)) +
scale_fill_gradient(high= 'red', low ='lightgrey') +
theme classic()

36.5°N 1 SID74
36.0°N 4

35.5°N 1

35.0°N 4

34.5°N 4 10
34.0°N 4 0

84°W 82°W 80°W 78°W 76°W

Here are the cases of SID relative to the birth rate in 1974 at a county level in North Carolina.
This considers that more metropolitan areas will have higher birth rates and, thus, higher SID
rates.

ggplot(nc) +
geom_sf(aes(fill = SID74/BIR74)) +
scale_fill_gradient(high= 'red', low ='lightgrey') +
theme_classic()

36.5°N 1 SID74/BIR74
36.0°N 1

0.0075
35.5°N 1
35.0°N 1 0.0050
34.5°N 1 0.0025
34.0°N 1

0.0000

84°W 82°W 80°W 78°W 76°W

Now, we might wonder why some counties have a higher incidence of SID. Do we have other
county-level information that can help us explain those differences? Are there geographical
similarities and differences that might explain why two counties closer together might have
similar rates?

289

To answer these questions, we must first consider what it means for two polygons or areas to
be “close.” We’ll use the language of two areas being close if they are neighbors. But, we need
to define a neighborhood structure on our geometry of polygons.

7.6.2 Neighborhood Structure

For data on a regular lattice, it’s fairly straightforward to think about what a neighborhood
means. You'll often see terminology referring to Chess moves.

a) b) c)
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1

1 2 3 4 5 1 2 3 4 65

Rook Bishop Queen

There are many ways to define the neighborhood structure if we have irregular lattices.

Queen: If two polygons touch at all, even at one point, such as a corner, they are
neighbors.

Rook: If two polygons share an edge (more than one point), they are neighbors.

K Nearest Neighbors: If we calculate the distance between the centers of the polygons,
also known as centroids, we can define a neighborhood based on K nearest polygons,
distance based on the centers.

Distance Nearest Neighbors: If we calculate the distance between the centers of the
polygons, also known as centroids, we can define a neighborhood based on a minimum
and maximum distance for the nearest polygons, distance based on the centers.

As you see in the visualizations, these different ways of defining a neighborhood lead to nice

and

not-so-nice properties.

Nice Properties

290

— Each polygon has at least one neighbor
— Neighbors make sense in the data context in that those neighbors share attributes
that might make them more correlated

e Not So Nice Properties

— Polygons have no neighbors; which means that we are assuming they aren’t spatially
correlated with any other polygon

— Polygons have too many neighbors, including some that wouldn’t be spatially cor-
related based on the data context

Of course, you can also define the neighborhoods manually to incorporate your knowledge
of the data context. The approaches defined above are great ways to start thinking about
neighboring polygons or areas and the correlation structure in the data.

Centroid of Polygons
centroids <- st_centroid(st_geometry(nc), of_largest_polygon=TRUE)

#Neighbor information for nc data
Queen <- poly2nb(nc, queen = TRUE)
Rook <- poly2nb(nc, queen = FALSE)

KNN <- knn2nb(knearneigh(centroids, k = 3)) #k: number of neighbors
KNNDist <- dnearneigh(centroids ,dl = 0,d2 = 40) #d1: min distance, d2: max distanc

Warning in dnearneigh(centroids, d1 = 0, d2 = 40): neighbour object has 7

sub-graphs

Network lines from Neighbors

nb_Q_net <- nb2lines(nb = Queen, coords = centroids, as_sf = TRUE)
nb_R_net <- nb2lines(nb = Rook, coords = centroids, as_sf = TRUE)
nb_KNN_net <- nb2lines(nb = KNN, coords = centroids, as_sf = TRUE)
nb_KNNDist_net <- nb2lines(nb = KNNDist, coords = centroids, as_sf = TRUE)

Plots of Neighbor Networks

nc %>%

ggplot() +
geom_sf() +
geom_sf (data

centroids) +
nb_Q_net) +

geom_sf (data
theme classic()

291

36.5°N - u

36.0°N
35.5°N 1 j
35.0°N 1
34.5°N 1

34.0°N -

84°W 82°W 80°W 78°W 76°W

nc %>%

ggplot) +
geom_sf() +
geom_sf(data = centroids) +
geom_sf(data = nb_R_net) +
theme_classic()

36.5°N 1 T -

36.0°N

35.5°N 1 j

35.0°N 1

34.5°N 1

34.0°N -

84°W 82°W 80°W 78°W 76°W

nc %>%

ggplot) +
geom_sf() +
geom_sf(data = centroids) +
geom_sf(data = nb_KNN_net) +
theme_classic()

292

36.5°N T .
T
36.0°N 4 1141 \

J
35.5°N 1 j

~
35.0°N 1
34.5°N-
34.0°N-
84°W 82°W 80°W 78°W 76°W
nc W>%
ggplot) +
geom_sf() +

geom_sf(data = centroids) +
geom_sf(data = nb_KNNDist_net) +
theme_classic()

36.5°N ' S
36.0°N o \\
35.5°N j

~
35.0°N 1 ol
. 7
34.5°N 1
34.0°N -
84°W 82°W 80°W 78°W 76°W

Typically, we codify this neighborhood structure with a spatial proximity or weighting matrix,
W. This n X n matrix has values, w;;, between 0 and 1 that reflect whether or not the i area
is a neighbor of the j area (0: not neighbor) and the strength of the influence of ¢ on j (>0 if
there is an influence or 1 if neighbor). These are called spatial weights in ArcGIS. We could
restrict ourselves to binary values of w;; such that 1 indicates a neighbor and 0 indicates not
a neighbor.

Note: These relationships are often symmetric but not always. For example, an urban county
may influence a nearby rural one more than vice versa. To incorporate this data context, we’d
have to update this W matric manually.

Considering the approaches above, Queen and Rook should give a symmetric W, but Nearest
Neighbors may not give a symmetric W based on the algorithm of defining neighbors.

293

Neighbor Information to Spatial Proximity or Weighting Matrix

style = 'B' forces W to be a binary matriz

style = 'W' standardizes the rows (taking into account how many neighbors an area has)
zero.policy = TRUE allows for polygons with mno neighbors

W <- nb2mat(Queen, style='B', zero.policy = TRUE)

W[1:10,1:10]

37009 37005 37171 37053 37131 37091 37029 37073 37185 37169

37009 0 1 0 0 0 0 0 0 0 0
37005 1 0 1 0 0 0 0 0 0 0
37171 0 1 0 0 0 0 0 0 0 1
37053 0 0 0 0 0 0 1 0 0 0
37131 0 0 0 0 0 1 0 0 1 0
37091 0 0 0 0 1 0 0 1 0 0
37029 0 0 0 1 0 0 0 1 0 0
37073 0 0 0 0 0 1 1 0 0 0
37185 0 0 0 0 1 0 0 0 0 0
37169 0 0 1 0 0 0 0 0 0 0

7.6.3 Neighborhood-based Correlation

Now that we’ve defined a neighborhood structure using W, we can estimate a neighborhood-
based correlation called Moran’s I. This is a measure of spatial autocorrelation using the
information in W. We define Moran’s I as

Y, Y, w(Y — V)Y, —¥)
ZL]‘ Wy ZZ<Y1 - }7>2

Under H,: Y, are independent and identically distributed, then % — N(0,1)
e Test heavily depends on the form of W
¢ Observations may not be independent or identically distributed due to a spatial trend
or non-constant variance, so we’ll need to deal with that first.
e There is a lack of consensus about how areas with no neighbors should be treated in this
context.

spdep: :moran.test (nc$SID79, nb2listw(Queen, style='B'), randomisation=FALSE, alternative

294

Moran I test under normality

data: nc$SID79
weights: nb2listw(Queen, style = "B")

Moran I statistic standard deviate = 1.9892, p-value = 0.04668

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
0.113074290 -0.010101010 0.003834515

spdep: :moran.test (nc$SID79, nb2listw(Queen, style='B'), alternative = 'two.sided') # Using r

Moran I test under randomisation

data: nc$SID79
weights: nb2listw(Queen, style = "B")

Moran I statistic standard deviate = 2.065, p-value = 0.03892

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
0.113074290 -0.010101010 0.003557876

You can calculate a local version of Moran’s I. For each region i,

I‘:ZHKYQ—-?ﬁiijuaAYS——YW
l >, (Y, V)2

such that the global version is proportional to the sum of the local Moran’s I values:

1221211.

i%j'wij i

local_i <- spdep::localmoran(nc$SID79, nb2listw(Queen, style='B'), alternative = 'two.sided'
nc %>% bind_cols(local_i) %>%

ggplot() +
geom_sf(aes(fill = Ii)) +

295

scale_fill _gradient2(mid = 'white', high= 'red', low ='blue') +
labs(title='Local Moran\'s I for SID79') +
theme classic()

Local Moran's | for SID79

36.5°N 1 [[li
36.0°N \
35.5°N /> 8

35.0°N 1 v 4
34.5°N 1 0
34.0°N 1

84°W 82°W 80°W 78°W 76°W

nc %>% bind_cols(local_i) %>%
mutate(pvalue = cut("Pr(z != E(Ii)) ,breaks=c(-Inf,0.05,Inf), labels = c('P-value < 0.05',
ggplot() +
geom_sf(aes(fill = pvalue)) +
labs(title='Local Test of Moran\'s I for SID79') +
theme classic()

Local Test of Moran's | for SID79

36.5°N 1
36.0°N 1 pvalue
35.5°N 1

. P-value < 0.05
35.0°N y

— > 0.

34.5°N - . P-value > 0.05
34.0°N A

84°W 82°W 80°W 78°W 76°W

7.6.4 Spatial Models

To account for spatial trends and spatial autocorrelation, we follow a series of steps:

1. Account for deterministic factors: Fit a regression model to model the mean with OLS,
then create a visual map of the residuals

296

V,=2{f+¢
where 7 indexes spatial region
2. Test the residuals after detrending with Moran’s I

3. If there is spatial autocorrelation as measured by Moran’s I, fit an autoregressive model.

For example, if we want to predict the SID county rate in North Carolina as a function of the
birth rate, we could fit a linear model first, then map the residuals and estimate the spatial
autocorrelation of the residuals.

nc %>%
ggplot(aes(y = SID74, x = BIR74)) +
geom_point() + geom_smooth(se=FALSE) + theme_classic()

“geom_smooth()~ using method = 'loess' and formula = 'y ~ x'
)
40
301
<
N~
a
m 20
101
O.
0 5000 10000 15000 20000
BIR74

nc_lm <- Ilm(formula = log(SID74+1) ~ BIR74, data = nc)
nc$lm resid <- resid(nc_1m)

nc %>%
ggplot O+

297

geom_sf(aes(fill = 1lm_resid)) +
scale_fill_gradient2(mid = 'white', high= 'red', low ='blue') +
theme classic()

36.5°N 1
36.0°N 1
35.5°N 1
35.0°N
34.5°N 1
34.0°N 1

84°W 82°W 80°W 78°W 76°W

#Examine Extreme Residuals (higher or lower than what we'd expect)
nc %>%
filter(abs(scale(lm_resid)) > 2)

Warning: Using one column matrices in “filter ()~ was deprecated in dplyr 1.1.0.
i Please use one dimensional logical vectors instead.

Simple feature collection with 1 feature and 15 fields
Geometry type: MULTIPOLYGON
Dimension: Xy
Bounding box: xmin: -80.32528 ymin: 34.80792 xmax: -79.85371 ymax: 35.20452
Geodetic CRS: +proj=longlat +datum=NAD27
AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74
37007 0.138 1.621 2096 2096 Anson 37007 37007 4 1570 15
NWBIR74 BIR79 SID79 NWBIR79 geometry 1lm_resid
37007 952 1875 4 1161 MULTIPOLYGON (((-79.91995 3... 1.448938

spdep: :moran.test(nc$lm_resid, nb2listw(Queen, style='B'), alternative = 'two.sided') # Usin

Moran I test under randomisation

data: nc$lm_resid
weights: nb2listw(Queen, style = "B")

Moran I statistic standard deviate = 4.0515, p-value = 5.089e-05

298

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
0.241674505 -0.010101010 0.003861889

7.6.4.1 Spatial Autoregressive Models

Simultaneous Autoregressive Model (SAR)

We build autoregressive models for the data based on the proximity matrix W,
Y = A\WY + X +¢, e~ N(0,0%I)

and typically, we assume Y are Gaussian if the outcome is continuous and use maximum
likelihood estimation to estimate the parameters of this model.

This can be rewritten as

Y ~ N(XB,02[(I — \W)T (I — XW)])
where the proximity matrix W should be weighted so that the rows sum to 1 (‘style = "W?).

library(spatialreg)

Loading required package: Matrix

Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':

expand, pack, unpack

Attaching package: 'spatialreg'

The following objects are masked from 'package:spdep':

get.ClusterOption, get.coresOption, get.mcOption,
get.VerboseOption, get.ZeroPolicyOption, set.ClusterOption,
set.coresOption, set.mcOption, set.VerboseOption,
set.ZeroPolicyOption

299

Convert Neighborhood Information to List (with weighting so that rows sum to 1)
listW <- nb2listw(Queen, style = 'W')

Fit SAR Model
nc_sar <- spautolm(formula = log(SID74+1) ~ BIR74, data = nc, listw = listW, family = "SAR")

summary (nc_sar)

Call: spautolm(formula = log(SID74 + 1) ~ BIR74, data = nc, listw = listW,
family = "SAR")

Residuals:
Min 1Q Median 3Q Max
-1.298005 -0.429960 0.077978 0.492145 1.386400

Coefficients:

Estimate Std. Error z value Pr(>l|zl)
(Intercept) 1.0882e+00 1.2639e-01 8.6097 < 2.2e-16
BIR74 1.5451e-04 1.6083e-05 9.6069 < 2.2e-16

Lambda: 0.48703 LR test value: 16.581 p-value: 4.661e-05
Numerical Hessian standard error of lambda: 0.10493

Log likelihood: -92.78273

ML residual variance (sigma squared): 0.3529, (sigma: 0.59406)
Number of observations: 100

Number of parameters estimated: 4

AIC: 193.57

nc$sar_resid <- resid(nc_sar)
nc$sar_pred <- exp(fitted(nc_sar))

nc %>%
ggplot O+
geom_sf (aes(fill = sar_pred)) +
labs(title='Predictions from SAR Model',fill = 'SID Rate') +
scale_fill_gradient(low = 'lightgrey', high='red')+
theme classic()

300

Predictions from SAR Model

36.5°N - SID Rate
36.0°N - v\\
75

35.5°N - //J
35.0°N y 50
34.5°N- 25
34.0°N-

84°W 82°W 80°W 78°W 76°W
nc %>%

geplot O+

geom_sf (aes(fill = sar_resid)) +

labs(title='Residuals from SAR Model',fill = 'Residuals') +
scale_fill gradient2(mid = 'white', high= 'red', low ='blue')+
theme_classic()

Residuals from SAR Model

36.5°N Residuals
36.0°N 4 lll 1.0
35.5°N 4 0.5
35.0°N 0.0
34.5°N 4 -0.5
34.0°N ’II -1.0
84°W 82°W 80°W 78°W 76°W
#RMSE

sqrt (mean(nc$sar_resid~2))

[1] 0.5940562
#Extreme Residuals (higher or lower than what we'd expect)

nc %>%
filter(abs(scale(sar_resid)) > 3)

Simple feature collection with O features and 17 fields
Bounding box: =xmin: NA ymin: NA xmax: NA ymax: NA

301

Geodetic CRS: +proj=longlat +datum=NAD27
[1] AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO
[8] CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
[15] geometry 1m_resid sar_resid sar_pred
<0 rows> (or O-length row.names)

Double check the residuals after the SAR model are independent
spdep: :moran.test(nc$sar_resid, nb2listw(Queen, style='W'), alternative = 'two.sided') # Usi:

Moran I test under randomisation

data: nc$sar_resid
weights: nb2listw(Queen, style = "W")

Moran I statistic standard deviate = -0.40597, p-value = 0.6848

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
-0.036666245 -0.010101010 0.004281978

Conditional Autoregressive Model (CAR)

An alternative but similar model says that
n
E(Y,|Y;,j# i) =a]f+) ciy(V; —2]B)
j=1

Var(Y;|Y;,j #1i) = 2 =12/w

n
where w, = Ej:l W, 4y

is typically Aw,;/w; .

¢;; is nonzero only if Y; € NN;, where N; is the neighborhood of Y. ¢;;

This can be rewritten as

Y ~ N(XB,0%(I — A\W)™1)

listW = nb2listw(Queen, style = 'W')
nc_car = spautolm(formula = log(SID74+1) ~ BIR74, data = nc, listw = listW, family = "CAR")

302

Warning in spautolm(formula = log(SID74 + 1) ~ BIR74, data = nc, listw = listW,
: Non-symmetric spatial weights in CAR model

summary (nc_car)

Call: spautolm(formula = log(SID74 + 1) ~ BIR74, data = nc, listw = listW,
family = "CAR")

Residuals:
Min 1Q Median 3Q Max
-1.23287 -0.39827 0.10560 0.43790 1.40183

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 8.9713e-01 1.3265e-01 6.7634 1.348e-11
BIR74 1.6749e-04 1.6149e-05 10.3716 < 2.2e-16

Lambda: 0.77612 LR test value: 16.605 p-value: 4.6027e-05
Numerical Hessian standard error of lambda: 0.34138

Log likelihood: -92.77079

ML residual variance (sigma squared): 0.34097, (sigma: 0.58393)
Number of observations: 100

Number of parameters estimated: 4

AIC: 193.54

nc$car_resid <- resid(nc_car)
nc$car_pred <- exp(fitted(nc_car))

nc %>%
ggplot O+
geom_sf (aes(fill = car_pred)) +
labs(title='Predictions from CAR Model',fill = 'SID Rate') +
scale_fill_gradient(low = 'lightgrey', high='red')+
theme classic()

303

Predictions from CAR Model

36.5°N - SID Rate
36.0°N - “\\ 125
35.5°N - //J 100
75
35.0°N - y
50
34.5°N-
25
34.0°N-
84°W 82°W 80°W 78°W 76°W
nc %>%
geplot O+

geom_sf (aes(fill = car_resid)) +

labs(title='Residuals from CAR Model',fill = 'Residuals') +
scale_fill gradient2(mid = 'white', high= 'red', low ='blue')+
theme_classic()

Residuals from CAR Model

36.5°N Residuals
36.0°N - lll Lo
35.5°N - 05
35.0°N A 0.0
34.5°N- -0.5
34.0°N- !II 1.0
84°W 82°W 80°W 78°W 76°W
#RMSE

sqrt (mean(nc$car_resid~2))

[1] 0.5882464

#Extreme Residuals (higher or lower than what we'd expect)
nc %h>%
filter(abs(scale(car_resid)) > 3)

Simple feature collection with O features and 19 fields
Bounding box: =xmin: NA ymin: NA xmax: NA ymax: NA

304

Geodetic CRS: +proj=longlat +datum=NAD27
[1] AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO
[8] CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
[15] geometry 1m_resid sar_resid sar_pred car_resid car_pred
<0 rows> (or O-length row.names)

Double check the residuals after the SAR model are independent
spdep: :moran.test(nc$car_resid, nb2listw(Queen, style='W'), alternative = 'two.sided') # Usi:

Moran I test under randomisation

data: nc$car_resid
weights: nb2listw(Queen, style = "W")

Moran I statistic standard deviate = -3.2381, p-value = 0.001203

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
-0.222000699 -0.010101010 0.004282266

Typically, the CAR model and its variations (iCAR, BYM, etc.) are fit in a Bayesian context.
The details of the Bayesian estimation are beyond the scope of this course. See CARBayes
package for more details.

Note: If you have count data within an area, transform it with a log() and model with a
Gaussian model.

Reference about SAR and CAR Models and Covariance: https://doi.org/10.1016/j.spasta.
2018.04.006

See the CARBayes package for more information.
7.6.4.2 Spatial Mixed Effects Models
While the SAR and CAR models are similar to autoregressive models for time series, we could

also allow coefficients to differ across space, similar to a mixed effects model that we used for
longitudinal data.

Y =XB+b+e, € ~ N(0,02I)

where the random effects b ~ N(0,G) and G can be assumed to be a covariance matrix based
on spatial correlation such as the Matern correlation structure.

305

https://doi.org/10.1016/j.spasta.2018.04.006
https://doi.org/10.1016/j.spasta.2018.04.006

library(spaMM)

Registered S3 methods overwritten by 'registry':
method from
print.registry_field proxy
print.registry_entry proxy

spaMM (Rousset & Ferdy, 2014, version 4.6.1) is loaded.

Type 'help(spaMM)' for a short introduction,

'news (package='spaMM')' for news,

and 'citation('spaMM')' for proper citation.

Further infos, slides, etc. at https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref.

Attaching package: 'spaMM'

The following objects are masked from 'package:spatstat.model':

Poisson, pseudoR2, response

nc2 <- cbind(nc, st_coordinates(st_centroid(nc))) %>%
rename(x = X, y = Y) %>/, # Rename coordinates to x and y for spaMM
as.data.frame()

Warning: st_centroid assumes attributes are constant over geometries

spamm <- fitme(log(SID74+1) ~ BIR74 + Matern(l | x+y), data = nc2, fixed = list(nu = 0.5))

summary (spamm)

formula: log(SID74 + 1) ~ BIR74 + Matern(l | x + y)
ML: Estimation of corrPars, lambda and phi by ML.
Estimation of fixed effects by ML.
Estimation of lambda and phi by 'outer' ML, maximizing logL.
family: gaussian(link = identity)
———————————— Fixed effects (beta) -------—-----
Estimate Cond. SE t-value
(Intercept) 0.9579409 0.2921880 3.279
BIR74 0.0001473 0.0000156 9.446

306

--------------- Random effects -----——————-—-—-
Family: gaussian(link = identity)
—--- Correlation parameters:
1.nu 1.rho
0.5000000 0.6325215
--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;
x+y : 0.3342
of obs: 100; # of groups: x + y, 100
-------------- Residual variance ----—-—--—7---
phi estimate was 0.214876
------------- Likelihood values ---—-—-—--——---
logLik
logL (p_v(h)): -89.61781

spamm.map <- cbind(nc, spamm_pred = predict(spamm)) %>%
mutate(spamm_resid = log(SID74+1) - spamm_pred)

spamm.map %>%
ggplot(aes(fill = exp(spamm_pred))) +
geom_sf() +
scale_fill gradient(low = 'lightgrey', high='red')+
theme classic()

exp(spamm_pred)

36.5°N 1
36.0°N

60
35.5°N 1
35.0°N 1 40
34.5°N 1

20
34.0°N 1

84°W 82°W 80°W 78°W 76°W

spamm.map %>%
ggplot (aes(fill = spamm_resid)) +
geom_sf() +
scale_fill_gradient2(mid = 'white', high= 'red', low ='blue') +
theme_classic()

307

36.5°N 4 spamm_resid
36.0°N -
05
35.5°N -
35.0°N- 0.0
34.5°N 1
-0.5
84°W 82°W 80°W 78°W 76°W
RMSE

sqrt (mean (spamm.map$spamm_resid~2))

[1] 0.3854601

Extreme Residuals (higher or lower than what we'd expect)
spamm.map %>%
filter(abs(scale(spamm_resid)) > 3)

Simple feature collection with O features and 21 fields
Bounding box: xmin: NA ymin: NA xmax: NA ymax: NA
Geodetic CRS: +proj=longlat +datum=NAD27

[1] AREA PERIMETER CNTY_ CNTY_ID NAME FIPS

[7] FIPSNO CRESS_ID BIR74 SID74 NWBIR74 BIR79
[13] SID79 NWBIR79 Im_resid sar_resid sar_pred car_resid
[19] car_pred spamm_pred geometry spamm_resid

<0 rows> (or O-length row.names)

Double check the residuals after the model are independent
spdep: :moran.test (spamm.map$spamm_resid, nb2listw(Queen, style='W'), alternative = 'two.side

Moran I test under randomisation

data: spamm.map$spamm_resid
weights: nb2listw(Queen, style = "W")

Moran I statistic standard deviate = -2.3794, p-value = 0.01734

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
-0.165848405 -0.010101010 0.004284663

308

7.6.4.3 Geographically (Spatially) Weighted Regression

Lastly, we present a non-parametric approach to spatial correlation called Geographically
Weighted Regression (GWR). The general model is

P
Y, =B+ Z Birin, + €
k=1

where Y, is the outcome at location ¢, x,, is the value of the kth explanatory variable at

location ¢, and 3, is a local regression coefficient for the kth explanatory variable.

GWR allows the coefficients to vary continuously over a study region, and a set of coefficients
can be estimated at any location. This is a non-parametric approach in that we do not specify
the structure of how the coefficients vary, but rather use a “local regression” approach in 2
dimensions.

Each set of regression coefficients is estimated by weighted least squares (weighting points
closer in space than those further away),

B, = (XTW,X) 'X"W,Y
where W, is a diagonal matrix denoting the geographical weighting of each observed data
for regression point i. The weighting is calculated with a chosen kernel function based on

proximities between the location 7 and the location of the other data points. One kernel
function that could be used is the Gaussian kernel, such that

-1 dij 2
'UJZ] = exp ? ?

where d;; is the distance between observation point j and regression point ¢ and b is the kernel
bandwidth. The optimal bandwidth can be chosen using cross-validation or a goodness-of-fit
measure such as AIC or BIC.

library (spgwr)

NOTE: This package does not constitute approval of GWR
as a method of spatial analysis; see example(gwr)

GWRbandwidth <- gwr.sel(log(SID74+1) ~ BIR74, data = nc2, coords = as.matrix(nc2[,c('x','y"').

309

Adaptive q: 0.381966 CV score: 40.10318

Adaptive q: 0.618034 CV score: 43.03422

Adaptive q: 0.236068 CV score: 36.54116

Adaptive q: 0.145898 CV score: 32.79307

Adaptive q: 0.09016994 CV score: 30.15781
Adaptive q: 0.05572809 CV score: 30.70451
Adaptive q: 0.08427944 CV score: 30.29308
Adaptive q: 0.1114562 CV score: 30.87369
Adaptive q: 0.09830056 CV score: 30.27686
Adaptive q: 0.0915056 CV score: 30.16935
Adaptive q: 0.08791997 CV score: 30.16358
Adaptive q: 0.08945536 CV score: 30.1547
Adaptive q: 0.08932905 CV score: 30.15461
Adaptive q: 0.08928836 CV score: 30.15461
Adaptive q: 0.08936974 CV score: 30.15462
Adaptive q: 0.08932905 CV score: 30.15461

gwr.model <- gwr(log(SID74+1) ~ BIR74, data = nc2,
adapt=GWRbandwidth,
coords = as.matrix(nc2[,c('x','y")]),
hatmatrix=TRUE,
se.fit=TRUE)

gwr .model

Call:

gur (formula = log(SID74 + 1) ~ BIR74, data = nc2, coords = as.matrix(nc2[,
c("x", "y")1), adapt = GWRbandwidth, hatmatrix = TRUE, se.fit = TRUE)

Kernel function: gwr.Gauss

Adaptive quantile: 0.08932905 (about 8 of 100 data points)

Summary of GWR coefficient estimates at data points:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 0.29756084 0.64874576 1.04875034 1.46053450 1.69422536 1.0530
BIR74 0.00010846 0.00012462 0.00016401 0.00024836 0.00064206 0.0002

Number of data points: 100

Effective number of parameters (residual: 2traceS - traceS'S): 15.4748
Effective degrees of freedom (residual: 2traceS - traceS'S): 84.5252
Sigma (residual: 2traceS - traceS'S): 0.53242

Effective number of parameters (model: traceS): 11.33877

Effective degrees of freedom (model: traceS): 88.66123

Sigma (model: traceS): 0.519853

Sigma (ML): 0.4894941

310

ATICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 169.387
AIC (GWR p. 96, eq. 4.22): 152.2499

Residual sum of squares: 23.96045

Quasi-global R2: 0.7270107

gwr.map <- cbind(nc, as.matrix(as.data.frame(gwr.model$SDF))) %>%
mutate (gwr_resid = log(SID74+1) - pred)

#map the coef, map the r2, map the residuals
gwr.map %>%
ggplot (aes(fill = X.Intercept.)) +
geom_sf() +
scale_fill_gradient(low = 'lightgrey', high='blue')+
theme_classic()

36.5°N - X.Intercept.
36.0°N 16
35.5°N 1 1.2
35.0°N Y
34.5°N 1 08
34.0°N 1 0.4
84°W 82°W 80°W 78°W 76°W

gwr.map %>%

geplot(aes(fill = BIR74.1)) +

geom_sf() +

scale_fill_gradient(low = 'lightgrey', high='green')+

theme_classic()
36.5°N 1 BIR74.1
36.0°N A \ 5 6e-04
35.5°N /) 5e-04
35.0°N u 4e_04
. 7 3e-04

2e-04

34.0°N

84°W 82°W 80°W 78°W 76°W

311

gwr.map %>%
gegplot(aes(£fill = exp(pred))) +
scale_fill _gradient(low = 'lightgrey', high='red')+
geom_sf() + theme_classic()

36.5°N 1
36.0°N 1
35.5°N 1
35.0°N 1
34.5°N 1
34.0°N 1

84°W 82°W 80°W 78°W 76°W

gwr.map %>%
ggplot(aes(fill = guwr_resid)) +
geom_sf() +
scale_fill _gradient2(mid = 'white', high= 'red', low ='blue') +
theme_classic()

36.5°N 1
36.0°N 1
35.5°N 1
35.0°N 1
34.5°N 1
34.0°N 1

84°W 82°W 80°W 78°W 76°W

RMSE
sqrt (mean (gwr .map$gwr_resid~2))

[1] 0.4894941

gwr.map %>’
ggplot(aes(fill = localR2)) +
geom_sf() + theme_classic()

312

36.5°N 1 localR2
36.0°N 1
35.5°N 1 j 0.7
35.0°N A
34.5°N - 7 0.6
34.0°N A
84°W 82°W 80°W 78°W 76°W
Double check the residuals after the model are independent
spdep: :moran.test (gwr.map$gwr_resid, nb2listw(Queen, style='W'), alternative = 'two.sided') :

Moran I test under randomisation

data: gur.map$gwr_resid
weights: nb2listw(Queen, style = "W")

Moran I statistic standard deviate = 0.53231, p-value = 0.5945

alternative hypothesis: two.sided

sample estimates:

Moran I statistic Expectation Variance
0.024710153 -0.010101010 0.004276652

7.6.5 Meaningful Distances

While it may be the easiest to define spatial distance using the Euclidean distance between
centroids of the areal boundaries, that may not be the most meaningful.

Two locations that are “close” geographically might be quite different due to other environmen-
tal factors such as physical factors (e.g., rivers, road infrastructure, and associated conditions
of accessibility), socio-economic factors (e.g., preferences for hospitals, schools, and stores),
and administrative geographies.

If you study outcomes related to transportation, river/stream networks or some complex ter-
rain conditions, typical distance metrics may fail to reflect true spatial proximity. Instead,
others should be considered, such as road network distance, travel time, water-based distance
(along a river or stream or coastline), or landscape-based (i.e. complex terrain) distance.

313

References

Chatfield, Chris, and Haipeng Xing. 2019. The Analysis of Time Series: An Introduction with
r. Chapman; Hall/CRC.

Cryer, Jonathan D, and Kung-Sik Chan. 2008. Time Series Analysis: With Applications in
r. Springer.

Shunway, Robert H, and David S Stoffer. 2019. Time Series: A Data Analysis Approach Using
r. Chapman; Hall/CRC.

Stoffer, David. 2025. Astsa: Applied Statistical Time Series Analysis. https://doi.org/10.
32614/CRAN.package.astsa.

314

https://doi.org/10.32614/CRAN.package.astsa
https://doi.org/10.32614/CRAN.package.astsa

A Matrix Algebra

In this class, we will be using matrices to help us organize data and information. Thus, it
is useful to know some basic definitions and properties of matrices. Linear algebra is not a
prerequisite for this course, so if this is new to you, don’t fret!

Use the this mathematical section as a reference as we go throughout the course. I've pur-
posefully put more here than we might need. If I refer to a property or term that you are
unfamiliar with, come back to check this section first.

A.1 Matrix & Vector Addition

If A is a (r x ¢) matrix and B is a (r x ¢) matrix (Note: nrow(A) = nrow(B) and ncol(A) =
ncol(B)!), then A + B is a (r x ¢) matrix with (¢, j)th element

=
Il

matrix(c(1,2,3,4) ,nrow=2,ncol=2)
matrix(c(5,6,7,8) ,nrow=2,ncol=2)

(os]
1]

A + B #element wise addition

[,11 [,2]
[1,] 6 10
[2,] 8 12

A.1.1 Properties

Here are some useful properties of matrices:

1. Commutative Property

A+B=B+A

2. Associative Property

315

A+(B+C)=(A+B)+C

3. Additive Identity
A+0=A

where 0 is a r X ¢ matrix with 0 elements.

4. Additive Inverse
o For any r x ¢ matrix A, there is a r X ¢ matrix B (= —A) such that

A+B=0

A.2 Matrix & Vector Multiplication

If Aisa (r x ¢) matrix and B is a (¢ X ¢) matrix (Note: ncol(A) = nrow(B)!), then AB is a
(r X ¢) matrix with (4, j)th element

q

(AB)ij = Z aikbkj

k=1

where a;;, is the element in the ith row and kth column of A and by; is the element in the kth
row and jth column of B.

Here, we say that A is postmultiplied by B and, equivalently, that B is premultiplied by A.
Here, the order matters!

A = matrix(c(1,2,3,4) ,nrow=2,ncol=2)
B = matrix(c(5,6,7,8) ,nrow=2,ncol=2)
A x B #element wise multiplication (not what you want....)

[,11 [,2]
[1,] 5 21
[2,] 12 32

A 7x% B #matrix multiplication

[,11 [,2]
[1,] 23 31
[2,] 34 46

316

A.2.1 Properties

Here are some useful properties of matrices:

1. Associative Property

A(BC) = (AB)C

2. Distributive Property

A(B+C)=AB+AC, (A +B)C = AC + BC

3. Multiplicative Identity
ILA=AI.=A

where I, is a r x r matrix with 1’s along the diagonal and 0’s otherwise. Generally, we’ll
drop the subscript and we’ll assume the dimension by its context.

A.3 Matrix Transpose

The transpose of any (r x ¢) A matrix is the (¢ x r) matrix denoted as AT or A’ such that
a;; is replaced by a;; everywhere.

A

[,11 [,2]
[1,] 1 3
[2,] 2 4

[,11 [,2]
[1,] 1 2
[2,] 3 4

A matrix is square if ¢ = r. The diagonal of a square matrix are the elements of a;; and the
off-diagonal elements of a square matrix are a;; where i # j.

If A is symmetric, then A = AT,

For any matrix A, AT A will be a square matrix.

317

A.3.1 Properties
The transpose of a matrix product is

(AB)T = BTAT
The transpose of a matrix sum is

(A+B)T = AT + BT
A.4 Inner product

For two vectors x and y, the standard inner (dot) product of the two vectors in R¥ is

k
<x,y>=x"y= szyz =T1Y1 + ToYg + o+ Tl
=1

To be an inner product, it has to satisfy 1) < x,x >> 0 with equality if x =0 2) < x,y >=<
y,x>and 3) < ax+by,z>=a<x,z2>+b<y,z >

x = 1:10
y = 21:30
X

(1] 1 2 3 4 5 6 7 8 910

[1] 21 22 23 24 25 26 27 28 29 30
class(x); class(y)
[1] "integer"
[1] "integer"

x %*% y #If x is a numeric vector (not a matrix), R doesn't differentiate between a column v

[,1]
[1,] 1485

318

e}
I

matrix(y,ncol=1)

<
]

class(x); class(y)

[1] "matrix" "array"

[1] "matrix" "array"
#x%*%y #Get an Error!

t (x) %x%hy

[,1]
[1,] 1485

A.5 Vector Difference

The vector difference between two p-dimensional vectors x and y is calculated element by
element,

(x—y);=m—y;

A.6 Vector Length

For a vector x € R¥, a general vector norm ||x]|, for p = 1,2, ... is defined as
m 1/p
I, = (Z Ixil”)
i—1
As p — oo, we have a special case,
Il = mase |z,
e L2-Norm: The most commonly used vector norm is when p = 2,

m

[xllo = [> (a;)?

i=1

319

matrix(x,ncol=1) #If x is a column vector (matrix with 1 column), it matters.

To be a norm, the following must be true, 1) ||x|| > 0, 2) ||ax|| = |a|||x||, and 3) ||x + y|| <
[1x|| + ||ly]| (triangle inequality).

sqrt (t (x) %*%x)

[,1]
[1,] 19.62142

sqrt (sum(x~2))

[1] 19.62142

A.7 Vector Distance

¢ FEuclidean distance: In Euclidean space, we often call the L2-norm a Euclidean Norm.
This gives the length of the vector from the origin. More generally, the Euclidean
distance between two vectors x and y is the L2-norm of the difference,

dx,y) =x=yllo= /> (@ —3)?=Vx-y)T(x—y)

%

This is the distance “as the crow flies.’
sqrt (sum((x-y) ~2))
[1] 63.24555

sqrt (t (x-y) %x%h(x-y))

[,1]
[1,] 63.24555

e Minkowski distance: A more general distance measurement between two vectors is based
on the general definition of the vector norm called the Minkowski distance,

1/p
d(x,y) = [x—yll, = (Z |z; — in”>

320

If p =2, then you get the Euclidean distance (as the crow flies),

d(x,y) = Z(% —y;)?

If p =1, then you get the Manhattan distance (city-block distance),

d(x,y) = Z | — il

If p — o0, then you get Chebyshev distance,
d(x,y) = |lx = yllo = max|z; -y

¢ Mahalanobis distance: In the context of random variables and data analysis, imagine
trying to find the distance between two individuals based on values of k different vari-
ables. We could find the differences in values amongst all of the variables between the
two individuals. However, the scale and units of each might be different. We could stan-
dardized each difference by dividing by the standard deviation of the variable amongst
the entire sample so that each difference is comparable. In order to incorporate the
dependence (covariance) between the variables as well, the Mahalanobis distance is a
modified Euclidean distance and is calculated as

d(x,y) =V(x—y)TS(x—y)

where S is the k x k sample covariance matrix of the variables based on the sample.

A.8 Vector Space

A vector space is a set of vectors which is closed under vector addition and scalar multipli-
cation. They must also adhere to typical axioms such as associativity, commutativity, etc (8
in all). We will focus on real vector spaces on RF.

The vector y = a;x; + asX9 + -+ a; Xy is a linear combination of the vectors x;, X, ..., Xy.
The set of all linear combinations of x4, X, ..., X) is their linear span.

A set of vectors is said to be linearly dependent if one of the vectors in the set can be
defined as a linear combination of the other vectors. In other words, if there exists & numbers
(ay,as,...,a;), not all zero, such that

41Xy + a9Xg + -+ apx, =0

If no vector in the set can be written in this way such that a,,...,a; have to be 0, then the
vectors are said to be linearly independent.

321

e Theorem: For a vector space V, a set of vectors are linearly dependent if and only if
the matrix of the vectors is singular (see below for the definition of singularity).

o Basis: A basis is a set of vectors that spans the whole vector space (i.e. any vector in the
vector space can be written as a linear combination of basis elements) and are linearly
independent.

A.9 Rank of matrix

The rank of A is dimension of row space of A (space spanned by rows of A) which equals the
dimension of the column space of A (space spanned by columns of A).

e The rank is the maximum number of linearly independent columns of a matrix.
e A matrix is full rank if the rank of the matrix is equal to the number of columns.

A.10 Singularity

A square matrix A is nonsingular if Ax = 0 implies that x = 0. If a matrix fails to be
nonsingular, it is called singular. - A square matrix is nonsingular if its rank is equal to the
number of rows or columns.

A.11 Determinant
The determinant of a square k x k£ matrix A is the scalar
k .
A= Zau‘Ale_l)lﬂ
i—1

where A, is the (k—1) x (k—1) matrix obtained by deleting the first row and the jth column
of A.

A

[,11 [,2]
[1,] 1 3
[2,] 2 4

322

det (A)

(1] -2

e Theorem: The determinant of a matrix A is 0 if and only if A is singular.

A.12 Matrix Inverse

The matrix B such that AB = BA =1 (where I is the identity matrix) is called the inverse
of A and is denoted by A~!.

e If A is a nonsingular square matrix, then there is a unique matrix B such that
AB=BA=1

To show the existence of an inverse, it is also equivalent to show that the determinant
of A is not zero.

e For square matrices A and B with the same dimension,
(Afl)T — (AT>71

(AB)"' = B'A"!

A.13 Trace of matrix for square matrix

The trace of a square matrix is the sum of the diagonal elements, tr(A) = Zj aj;

A.13.1 Properties

tr(cA) =ctr(A)
tr(A £B) =tr(A) £ tr(B)
tr(AB) = tr(BA)

323

A.14 Vector Projection

The projection of a vector y on a vector x is

ylx
—FX
%3

The orthogonal projection of a vector y on a the column space of matrix X gives
you the y = X3 that minimizes ||y — y||.

(XTX) ' XTy

A.15 Orthogonality

A square matrix is orthogonal if its rows, considered as vectors, are mutually perpendicular
and have unit lengths; that is, AAT = 1.

A.16 Eigenvalues and Eigenvectors

The scalars, A, that satisfy the polynomial characteristic equation |[A — M| = 0 are called
eigenvalues of matrix A.

If e is a non-zero vector such that
Ae = e

then e is said to be an eigenvector of the matrix A associated with the eigenvalue \.

A.17 Positive Definiteness

T

A quadratic form in k variables z,...,z, is xT Ax, where x! = [z,...,7;] and A is a

. . : k k
symmetric k X k matrix. It can be written as) ., Ej:l ;T ;.

A symmetric matrix is positive definite if
xT'Ax >0

for all vectors x # 0. If a matrix is positive definite, then all of the eigenvalues will be
positive.

324

A symmetric matrix is nonnegative definite if
xTAx >0

for all vectors x # 0.

Cholesky Decomposition: For a real-valued symmetric positive definite matrix A, it can

be decomposed as
A=LLT

where L is a lower triangular matrix with real and positive diagonal elements.

A.18 (Ordinary) Least Squares

A.18.1 Calculus Approach

Let y, be the outcome for individual ¢ = 1,...,n and x; be a vector of explanatory variables
for individual 4, then when we fit a linear regression model, we want to find the slopes,
B = (By, - B,), that minimize the sum of squared errors,

Z(yz —x;)’

%

If we stack the y, on top of each other into a n x 1 vector y and stack the x, on top of each
other into a n x (p+1) matrix X, we can write the sum of squared errors as an inner product,

(y —Xp8)"(y —Xp)

By expanding this using matrix multiplication and properties, we get

yTy — BT XTy — y"XB + g XTX}
This can be simplified to

yTy —28"XTy + 8" XTXp

To find the value of § that minimizes this quantity, we can find the derivative and set the
equations equal to zero.

;ﬁ yTy —28"XTy + 87 XTX3] = —2XTy + 2XTX

325

If we set this equal to 0 and solve for 3, we get
BOLS = (XTX)iley

A.18.2 Projection Approach
Another way to approach Least Squares is to say that we want to find the unique y in Col(X),

the column space of X, such that we minimize ||y — y[|$. In order for § to be in the column
space of X, y = Xf.

The orthogonal projection of a vector y on a the column space of matrix X is

y = X(XTX)1XTy
and therefore,

B=(XTX)'X"y

326

	Preface
	Introduction
	Data Types
	Data Type Examples

	Motivation for Methods
	Simulated Data
	OLS Estimation

	General Themes
	Questions of Interest

	Outline

	Probability Review
	Random Variable
	Moments
	Expectation
	Covariance and Variance
	Correlation

	Joint Probability Distributions
	Random Vectors and Matrices
	Random Vectors
	Random Matrices

	Multivariate Normal Distribution
	Contours of Density
	Properties of Multivariate Normal

	Modeling Covariance
	Random Process
	Autocovariance
	Autocovariance Function
	Autocorrelation Function
	Covariance Matrix
	Correlation Matrix

	Models, Simplifications, & Constraints
	Common Constraints
	Common Model Structures

	Estimating with Data
	Sample Covariance Matrix
	Sample Autocovariance Function
	Sample Semivariogram

	Model Components
	Trend
	Parametric Approaches
	Nonparametric Approaches
	In Practice: Estimate vs. Remove

	Seasonality
	Parametric Approaches
	Nonparametric Approaches

	Time Series Data
	R: Time Series Objects
	ACF: Autocorrelation Function
	Modeling the Errors
	Autoregressive Models
	AR(1) Model
	Random Walk
	AR(p) Model

	Moving Average Models
	MA(1) Model
	MA(q) Model

	AR(p) as MA(\infty)
	AR(1) Model
	AR(p) Model
	AR(p) Estimation: Yule-Walker Equations

	ARMA Models
	Model Selection

	Real Data Example
	ARIMA and SARIMA Models
	ARIMA Models
	Seasonal ARIMA Models

	Forecasting
	Prediction Intervals

	Appendix
	Derivations for AR(1) Model

	Other Time Series References

	Longitudinal Data
	Sources of Variation
	Data Examples
	Example 1: The orthodontic study data of Potthoff and Roy (1964).
	Example 2: Vitamin E diet supplement and growth of guinea pigs
	Example 3: Epileptic seizures and chemotherapy
	Example 4: Maternal smoking and child respiratory health

	R: Wide V. Long Format
	Notation
	Multivariate Normal Probability Model

	Failure of Standard Estimation Methods
	Ordinary Least Squares
	Generalized Least Squares

	Generalized Linear Models
	Distributional Assumption
	Systematic Component
	Link Function

	Marginal Models
	Model Specification
	Interpretation
	Estimation
	Model Selection Tools and Diagnostics

	Mixed Effects
	Individual Intercepts
	Individual Slopes
	Multi-level or Hierarchical Model
	Mixed Effects Model
	History
	Interpretation
	Estimation
	Model Selection
	Predicting Random Effects
	Predicting Outcomes
	Generalized Linear Mixed Effects Models

	Spatial Data
	Coordinate Reference Systems (CRS)
	Ellipsoid
	Datum
	Projection

	Data Models
	Vector
	Raster

	Working with Spatial Data in R
	R Packages
	Read in data to R
	Data classes in R
	Convert data class types
	Static Visualizations
	More R Resources

	Point Processes (optional)
	Poisson Point Processes
	Non-Parametric Intensity Estimation
	Parametric Intensity Estimation
	Detecting Interaction Effects
	Cluster Poisson Processes
	Inhibition Poisson Processes
	Other Point Process Models

	Point Referenced Data (optional)
	Gaussian Process
	Covariance Models
	Variograms, Semivariograms
	Kriging

	Areal Data
	Polygons
	Neighborhood Structure
	Neighborhood-based Correlation
	Spatial Models
	Meaningful Distances

	References
	Appendices
	Matrix Algebra
	Matrix & Vector Addition
	Properties

	Matrix & Vector Multiplication
	Properties

	Matrix Transpose
	Properties

	Inner product
	Vector Difference
	Vector Length
	Vector Distance
	Vector Space
	Rank of matrix
	Singularity
	Determinant
	Matrix Inverse
	Trace of matrix for square matrix
	Properties

	Vector Projection
	Orthogonality
	Eigenvalues and Eigenvectors
	Positive Definiteness
	(Ordinary) Least Squares
	Calculus Approach
	Projection Approach

